Cargando…
An Automated Data Fusion-Based Gear Faults Classification Framework in Rotating Machines
The feasibility and usefulness of frequency domain fusion of data from multiple vibration sensors installed on typical industrial rotating machines, based on coherent composite spectrum (CCS) as well as poly-coherent composite spectrum (pCCS) techniques, have been well-iterated by earlier studies. H...
Autores principales: | Cao, Ruifeng, Yunusa-Kaltungo, Akilu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8122872/ https://www.ncbi.nlm.nih.gov/pubmed/33922528 http://dx.doi.org/10.3390/s21092957 |
Ejemplares similares
-
Gear Fault Diagnosis Method Based on Multi-Sensor Information Fusion and VGG
por: Huo, Dongyue, et al.
Publicado: (2022) -
Multi-Filter Clustering Fusion for Feature Selection in Rotating Machinery Fault Classification
por: Mochammad, Solichin, et al.
Publicado: (2022) -
Fault Detection of Planetary Gears Based on Signal Space Constellations
por: Martincorena-Arraiza, Maite, et al.
Publicado: (2022) -
Motion Periods of Planet Gear Fault Meshing Behavior
por: Zhang, Mian, et al.
Publicado: (2018) -
A Fuzzy Fusion Rotating Machinery Fault Diagnosis Framework Based on the Enhancement Deep Convolutional Neural Networks
por: Yang, Daoguang, et al.
Publicado: (2022)