Cargando…

Nanostructured Iron Sulfide/N, S Dual-Doped Carbon Nanotube-Graphene Composites as Efficient Electrocatalysts for Oxygen Reduction Reaction

Nanostructured FeS dispersed onto N, S dual-doped carbon nanotube–graphene composite support (FeS/N,S:CNT–GR) was prepared by a simple synthetic method. Annealing an ethanol slurry of Fe precursor, thiourea, carbon nanotube, and graphene oxide at 973 K under N(2) atmosphere and subsequent acid treat...

Descripción completa

Detalles Bibliográficos
Autores principales: Chae, Gyu Sik, Youn, Duck Hyun, Lee, Jae Sung
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8122905/
https://www.ncbi.nlm.nih.gov/pubmed/33922588
http://dx.doi.org/10.3390/ma14092146
Descripción
Sumario:Nanostructured FeS dispersed onto N, S dual-doped carbon nanotube–graphene composite support (FeS/N,S:CNT–GR) was prepared by a simple synthetic method. Annealing an ethanol slurry of Fe precursor, thiourea, carbon nanotube, and graphene oxide at 973 K under N(2) atmosphere and subsequent acid treatment produced FeS nanoparticles distributed onto the N, S-doped carbon nanotube–graphene support. The synthesized FeS/N,S:CNT–GR catalyst exhibited significantly enhanced electrochemical performance in the oxygen reduction reaction (ORR) compared with bare FeS, FeS/N,S:GR, and FeS/N,S:CNT with a small half-wave potential (0.827 V) in an alkaline electrolyte. The improved ORR performance, comparable to that of commercial Pt/C, could be attributed to synergy between the small FeS nanoparticles with a high activity and the N, S-doped carbon nanotube–graphene composite support providing high electrical conductivity, large surface area, and additional active sites.