Cargando…
Nanostructured Iron Sulfide/N, S Dual-Doped Carbon Nanotube-Graphene Composites as Efficient Electrocatalysts for Oxygen Reduction Reaction
Nanostructured FeS dispersed onto N, S dual-doped carbon nanotube–graphene composite support (FeS/N,S:CNT–GR) was prepared by a simple synthetic method. Annealing an ethanol slurry of Fe precursor, thiourea, carbon nanotube, and graphene oxide at 973 K under N(2) atmosphere and subsequent acid treat...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8122905/ https://www.ncbi.nlm.nih.gov/pubmed/33922588 http://dx.doi.org/10.3390/ma14092146 |
Sumario: | Nanostructured FeS dispersed onto N, S dual-doped carbon nanotube–graphene composite support (FeS/N,S:CNT–GR) was prepared by a simple synthetic method. Annealing an ethanol slurry of Fe precursor, thiourea, carbon nanotube, and graphene oxide at 973 K under N(2) atmosphere and subsequent acid treatment produced FeS nanoparticles distributed onto the N, S-doped carbon nanotube–graphene support. The synthesized FeS/N,S:CNT–GR catalyst exhibited significantly enhanced electrochemical performance in the oxygen reduction reaction (ORR) compared with bare FeS, FeS/N,S:GR, and FeS/N,S:CNT with a small half-wave potential (0.827 V) in an alkaline electrolyte. The improved ORR performance, comparable to that of commercial Pt/C, could be attributed to synergy between the small FeS nanoparticles with a high activity and the N, S-doped carbon nanotube–graphene composite support providing high electrical conductivity, large surface area, and additional active sites. |
---|