Cargando…
Eco-Friendly Dye-Sensitized Solar Cells Based on Water-Electrolytes and Chlorophyll
Organic solvents used for electrolytes of dye-sensitized solar cells (DSSCs) are generally not only toxic and explosive but also prone to leakage due to volatility and low surface tension. The representative dyes of DSSCs are ruthenium-complex molecules, which are expensive and require a complicated...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8122968/ https://www.ncbi.nlm.nih.gov/pubmed/33922584 http://dx.doi.org/10.3390/ma14092150 |
Sumario: | Organic solvents used for electrolytes of dye-sensitized solar cells (DSSCs) are generally not only toxic and explosive but also prone to leakage due to volatility and low surface tension. The representative dyes of DSSCs are ruthenium-complex molecules, which are expensive and require a complicated synthesis process. In this paper, the eco-friendly DSSCs were presented based on water-based electrolytes and a commercially available organic dye. The effect of aging time after the device fabrication and the electrolyte composition on the photovoltaic performance of the eco-friendly DSSCs were investigated. Plasma treatment of TiO(2) was adopted to improve the dye adsorption as well as the wettability of the water-based electrolytes on TiO(2). It turned out that the plasma treatment was an effective way of improving the photovoltaic performance of the eco-friendly DSSCs by increasing the efficiency by 3.4 times. For more eco-friendly DSSCs, the organic-synthetic dye was replaced by chlorophyll extracted from spinach. With the plasma treatment, the efficiency of the eco-friendly DSSCs based on water-electrolytes and chlorophyll was comparable to those of the previously reported chlorophyll-based DSSCs with non-aqueous electrolytes. |
---|