Cargando…
3D MRI Reconstruction Based on 2D Generative Adversarial Network Super-Resolution
The diagnosis of brain pathologies usually involves imaging to analyze the condition of the brain. Magnetic resonance imaging (MRI) technology is widely used in brain disorder diagnosis. The image quality of MRI depends on the magnetostatic field strength and scanning time. Scanners with lower field...
Autores principales: | Zhang, Hongtao, Shinomiya, Yuki, Yoshida, Shinichi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8122986/ https://www.ncbi.nlm.nih.gov/pubmed/33922811 http://dx.doi.org/10.3390/s21092978 |
Ejemplares similares
-
SOUP-GAN: Super-Resolution MRI Using Generative Adversarial Networks
por: Zhang, Kuan, et al.
Publicado: (2022) -
Improved Generative Adversarial Network for Super-Resolution Reconstruction of Coal Photomicrographs
por: Zou, Liang, et al.
Publicado: (2023) -
Super-Resolution Reconstruction Method of Pavement Crack Images Based on an Improved Generative Adversarial Network
por: Yuan, Bo, et al.
Publicado: (2022) -
Super-Resolution Reconstruction of Terahertz Images Based on Residual Generative Adversarial Network with Enhanced Attention
por: Hou, Zhongwei, et al.
Publicado: (2023) -
FA-GAN: Fused attentive generative adversarial networks for MRI image super-resolution
por: Jiang, Mingfeng, et al.
Publicado: (2021)