Cargando…
Deep Residual Networks for User Authentication via Hand-Object Manipulations
With the ubiquity of wearable devices, various behavioural biometrics have been exploited for continuous user authentication during daily activities. However, biometric authentication using complex hand behaviours have not been sufficiently investigated. This paper presents an implicit and continuou...
Autores principales: | Choi, Kanghae, Ryu, Hokyoung, Kim, Jieun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8122988/ https://www.ncbi.nlm.nih.gov/pubmed/33922833 http://dx.doi.org/10.3390/s21092981 |
Ejemplares similares
-
Object Manipulation with an Anthropomorphic Robotic Hand via Deep Reinforcement Learning with a Synergy Space of Natural Hand Poses
por: Rivera, Patricio, et al.
Publicado: (2021) -
Deep Residual Network for Smartwatch-Based User Identification through Complex Hand Movements
por: Mekruksavanich, Sakorn, et al.
Publicado: (2022) -
Clip-On IMU System for Assessing Age-Related Changes in Hand Functions
por: Lee, Seungjae, et al.
Publicado: (2020) -
Advances in user authentication
por: Dasgupta, Dipankar, et al.
Publicado: (2017) -
An Improved Lightweight User Authentication Scheme for the Internet of Medical Things
por: Kim, Keunok, et al.
Publicado: (2023)