Cargando…
Quantization and Deployment of Deep Neural Networks on Microcontrollers
Embedding Artificial Intelligence onto low-power devices is a challenging task that has been partly overcome with recent advances in machine learning and hardware design. Presently, deep neural networks can be deployed on embedded targets to perform different tasks such as speech recognition, object...
Autores principales: | Novac, Pierre-Emmanuel, Boukli Hacene, Ghouthi, Pegatoquet, Alain, Miramond, Benoît, Gripon, Vincent |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8122998/ https://www.ncbi.nlm.nih.gov/pubmed/33922868 http://dx.doi.org/10.3390/s21092984 |
Ejemplares similares
-
Trainable quantization for Speedy Spiking Neural Networks
por: Castagnetti, Andrea, et al.
Publicado: (2023) -
SPIDEN: deep Spiking Neural Networks for efficient image denoising
por: Castagnetti, Andrea, et al.
Publicado: (2023) -
The New Small Wheel
por: Boukli Hacene, Ghouthi
Publicado: (2015) -
Unsupervised Anomaly Detection for Cars CAN Sensors Time Series Using Small Recurrent and Convolutional Neural Networks
por: Cherdo, Yann, et al.
Publicado: (2023) -
General Purpose and Neural Network Approach for Benchmarking Microcontrollers Under Radiation
por: Giordano, Marco, et al.
Publicado: (2021)