Cargando…

FASDQ: Fault-Tolerant Adaptive Scheduling with Dynamic QoS-Awareness in Edge Containers for Delay-Sensitive Tasks

As the requirement for real-time data analysis increases, edge computing is being implemented to leverage the resources of edge devices to reduce system response times and decrease the latency. However, due to the resource constraints of edge clouds, edge servers are more prone to failures than othe...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Ruifeng, Chen, Ningjiang, Yao, Xuyi, Hu, Liangqing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8123019/
https://www.ncbi.nlm.nih.gov/pubmed/33922731
http://dx.doi.org/10.3390/s21092973
Descripción
Sumario:As the requirement for real-time data analysis increases, edge computing is being implemented to leverage the resources of edge devices to reduce system response times and decrease the latency. However, due to the resource constraints of edge clouds, edge servers are more prone to failures than other systems. Therefore, guaranteeing the reliability of services in edge clouds is critical. In this paper, we propose a fault-tolerant adaptive scheduling mechanism with dynamic quality of service (QoS) awareness (FASDQ), which extends the primary/backup (PB) model by applying QoS on demand to task copies. The aim of the method is to reduce the latency and achieve reliable service for tasks by changing the execution time of task copies. This paper also proposes a container resource-adaptive adjustment mechanism, which adjusts the timing of resources when the available resources cannot meet the task copy requirements. Finally, this paper reports the results of simulation experiments on the EdgeCloudSim platform to evaluate the difference in performance between FASDQ and other methods. The results show that the mechanism effectively reduces the execution time of task copies and outperforms other methods in terms of reliability and general resource utilization.