Cargando…
Prediction of Chromatography Conditions for Purification in Organic Synthesis Using Deep Learning
In this research, a process for developing normal-phase liquid chromatography solvent systems has been proposed. In contrast to the development of conditions via thin-layer chromatography (TLC), this process is based on the architecture of two hierarchically connected neural network-based components...
Autores principales: | Vaškevičius, Mantas, Kapočiūtė-Dzikienė, Jurgita, Šlepikas, Liudas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8123027/ https://www.ncbi.nlm.nih.gov/pubmed/33922736 http://dx.doi.org/10.3390/molecules26092474 |
Ejemplares similares
-
Deep learning-based automatic action extraction from structured chemical synthesis procedures
por: Vaškevičius, Mantas, et al.
Publicado: (2023) -
Neural network hyperparameter optimization for prediction of real estate prices in Helsinki
por: Kalliola, Jussi, et al.
Publicado: (2021) -
The use of predictive models to develop chromatography-based purification processes
por: Bernau, C. R., et al.
Publicado: (2022) -
Purification of monoclonal antibodies by hydrophobic interaction chromatography under no-salt conditions
por: Ghose, Sanchayita, et al.
Publicado: (2013) -
Purification by Automatic Gas Chromatography
por: Tenenbaum, Milton, et al.
Publicado: (1962)