Cargando…
SMOTE-DRNN: A Deep Learning Algorithm for Botnet Detection in the Internet-of-Things Networks
Nowadays, hackers take illegal advantage of distributed resources in a network of computing devices (i.e., botnet) to launch cyberattacks against the Internet of Things (IoT). Recently, diverse Machine Learning (ML) and Deep Learning (DL) methods were proposed to detect botnet attacks in IoT network...
Autores principales: | Popoola, Segun I., Adebisi, Bamidele, Ande, Ruth, Hammoudeh, Mohammad, Anoh, Kelvin, Atayero, Aderemi A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8123033/ https://www.ncbi.nlm.nih.gov/pubmed/33923151 http://dx.doi.org/10.3390/s21092985 |
Ejemplares similares
-
Using honeypots to model botnet attacks on the internet of medical things()
por: Wang, Huanran, et al.
Publicado: (2022) -
Lightweight Internet of Things Botnet Detection Using One-Class Classification
por: Malik, Kainat, et al.
Publicado: (2022) -
Comparative assessment of data obtained using empirical models for path loss predictions in a university campus environment
por: Popoola, Segun I., et al.
Publicado: (2018) -
Received signal strength and local terrain profile data for radio network planning and optimization at GSM frequency bands
por: Popoola, Segun I., et al.
Publicado: (2017) -
Exploration of daily Internet data traffic generated in a smart university campus
por: Adeyemi, Oluwaseun J., et al.
Publicado: (2018)