Cargando…
Semi-Automated Data Processing and Semi-Supervised Machine Learning for the Detection and Classification of Water-Column Fish Schools and Gas Seeps with a Multibeam Echosounder †
Multibeam echosounders are widely used for 3D bathymetric mapping, and increasingly for water column studies. However, they rapidly collect huge volumes of data, which poses a challenge for water column data processing that is often still manual and time-consuming, or affected by low efficiency and...
Autores principales: | Minelli, Annalisa, Tassetti, Anna Nora, Hutton, Briony, Pezzuti Cozzolino, Gerardo N., Jarvis, Toby, Fabi, Gianna |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8123111/ https://www.ncbi.nlm.nih.gov/pubmed/33923343 http://dx.doi.org/10.3390/s21092999 |
Ejemplares similares
-
Physics-Based Modelling and Simulation of Multibeam Echosounder Perception for Autonomous Underwater Manipulation
por: Choi, Woen-Sug, et al.
Publicado: (2021) -
Seagrass habitat suitability model for Redang Marine Park using multibeam echosounder data: Testing different spatial resolutions and analysis window sizes
por: Muhamad, Muhammad Abdul Hakim, et al.
Publicado: (2021) -
Semi-supervised learning /
Publicado: (2010) -
Generative Adversarial Training for Supervised and Semi-supervised Learning
por: Wang, Xianmin, et al.
Publicado: (2022) -
Semi-supervised discovery of differential genes
por: Oba, Shigeyuki, et al.
Publicado: (2006)