Cargando…

Effect of Fillets on Mechanical Properties of Lattice Structures Fabricated Using Multi-Jet Fusion Technology

Cellular structures with tailored topologies can be fabricated using additive manufacturing (AM) processes to obtain the desired global and local mechanical properties, such as stiffness and energy absorption. Lattice structures usually fail from the sharp edges owing to the high stress concentratio...

Descripción completa

Detalles Bibliográficos
Autores principales: Nazir, Aamer, Arshad, Ahmad-Bin, Hsu, Chi-Pin, Jeng, Jeng-Ywan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8123134/
https://www.ncbi.nlm.nih.gov/pubmed/33923348
http://dx.doi.org/10.3390/ma14092194
Descripción
Sumario:Cellular structures with tailored topologies can be fabricated using additive manufacturing (AM) processes to obtain the desired global and local mechanical properties, such as stiffness and energy absorption. Lattice structures usually fail from the sharp edges owing to the high stress concentration and residual stress. Therefore, it is crucial to analyze the failure mechanism of lattice structures to improve the mechanical properties. In this study, several lattice topologies with fillets were designed, and the effects of the fillets on the stiffness, energy absorption, energy return, and energy loss of an open-cell lattice structure were investigated at a constant relative density. A recently developed high-speed AM multi-jet fusion technology was employed to fabricate lattice samples with two different unit cell sizes. Nonlinear simulations using ANSYS software were performed to investigate the mechanical properties of the samples. Experimental compression and loading–unloading tests were conducted to validate the simulation results. The results showed that the stiffness and energy absorption of the lattice structures can be improved significantly by the addition of fillets and/or vertical struts, which also influence other properties such as the failure mechanism and compliance. By adding the fillets, the failure location can be shifted from the sharp edges or joints to other regions of the lattice structure, as observed by comparing the failure mechanisms of type B and C structures with that of the type A structure (without fillets). The results of this study suggest that AM software designers should consider filleted corners when developing algorithms for generating various types of lattice structures automatically. Additionally, it was found that the accumulation of unsintered powder in the sharp corners of lattice geometries can also be minimized by the addition of fillets to convert the sharp corners to curved edges.