Cargando…
Progressive von Mises–Fisher Filtering Using Isotropic Sample Sets for Nonlinear Hyperspherical Estimation †
In this work, we present a novel scheme for nonlinear hyperspherical estimation using the von Mises–Fisher distribution. Deterministic sample sets with an isotropic layout are exploited for the efficient and informative representation of the underlying distribution in a geometrically adaptive manner...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8123154/ https://www.ncbi.nlm.nih.gov/pubmed/33923212 http://dx.doi.org/10.3390/s21092991 |
_version_ | 1783692820425474048 |
---|---|
author | Li, Kailai Pfaff, Florian Hanebeck, Uwe D. |
author_facet | Li, Kailai Pfaff, Florian Hanebeck, Uwe D. |
author_sort | Li, Kailai |
collection | PubMed |
description | In this work, we present a novel scheme for nonlinear hyperspherical estimation using the von Mises–Fisher distribution. Deterministic sample sets with an isotropic layout are exploited for the efficient and informative representation of the underlying distribution in a geometrically adaptive manner. The proposed deterministic sampling approach allows manually configurable sample sizes, considerably enhancing the filtering performance under strong nonlinearity. Furthermore, the progressive paradigm is applied to the fusing of measurements of non-identity models in conjunction with the isotropic sample sets. We evaluate the proposed filtering scheme in a nonlinear spherical tracking scenario based on simulations. Numerical results show the evidently superior performance of the proposed scheme over state-of-the-art von Mises–Fisher filters and the particle filter. |
format | Online Article Text |
id | pubmed-8123154 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-81231542021-05-16 Progressive von Mises–Fisher Filtering Using Isotropic Sample Sets for Nonlinear Hyperspherical Estimation † Li, Kailai Pfaff, Florian Hanebeck, Uwe D. Sensors (Basel) Article In this work, we present a novel scheme for nonlinear hyperspherical estimation using the von Mises–Fisher distribution. Deterministic sample sets with an isotropic layout are exploited for the efficient and informative representation of the underlying distribution in a geometrically adaptive manner. The proposed deterministic sampling approach allows manually configurable sample sizes, considerably enhancing the filtering performance under strong nonlinearity. Furthermore, the progressive paradigm is applied to the fusing of measurements of non-identity models in conjunction with the isotropic sample sets. We evaluate the proposed filtering scheme in a nonlinear spherical tracking scenario based on simulations. Numerical results show the evidently superior performance of the proposed scheme over state-of-the-art von Mises–Fisher filters and the particle filter. MDPI 2021-04-24 /pmc/articles/PMC8123154/ /pubmed/33923212 http://dx.doi.org/10.3390/s21092991 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Li, Kailai Pfaff, Florian Hanebeck, Uwe D. Progressive von Mises–Fisher Filtering Using Isotropic Sample Sets for Nonlinear Hyperspherical Estimation † |
title | Progressive von Mises–Fisher Filtering Using Isotropic Sample Sets for Nonlinear Hyperspherical Estimation † |
title_full | Progressive von Mises–Fisher Filtering Using Isotropic Sample Sets for Nonlinear Hyperspherical Estimation † |
title_fullStr | Progressive von Mises–Fisher Filtering Using Isotropic Sample Sets for Nonlinear Hyperspherical Estimation † |
title_full_unstemmed | Progressive von Mises–Fisher Filtering Using Isotropic Sample Sets for Nonlinear Hyperspherical Estimation † |
title_short | Progressive von Mises–Fisher Filtering Using Isotropic Sample Sets for Nonlinear Hyperspherical Estimation † |
title_sort | progressive von mises–fisher filtering using isotropic sample sets for nonlinear hyperspherical estimation † |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8123154/ https://www.ncbi.nlm.nih.gov/pubmed/33923212 http://dx.doi.org/10.3390/s21092991 |
work_keys_str_mv | AT likailai progressivevonmisesfisherfilteringusingisotropicsamplesetsfornonlinearhypersphericalestimation AT pfaffflorian progressivevonmisesfisherfilteringusingisotropicsamplesetsfornonlinearhypersphericalestimation AT hanebeckuwed progressivevonmisesfisherfilteringusingisotropicsamplesetsfornonlinearhypersphericalestimation |