Cargando…

Progressive von Mises–Fisher Filtering Using Isotropic Sample Sets for Nonlinear Hyperspherical Estimation †

In this work, we present a novel scheme for nonlinear hyperspherical estimation using the von Mises–Fisher distribution. Deterministic sample sets with an isotropic layout are exploited for the efficient and informative representation of the underlying distribution in a geometrically adaptive manner...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Kailai, Pfaff, Florian, Hanebeck, Uwe D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8123154/
https://www.ncbi.nlm.nih.gov/pubmed/33923212
http://dx.doi.org/10.3390/s21092991
_version_ 1783692820425474048
author Li, Kailai
Pfaff, Florian
Hanebeck, Uwe D.
author_facet Li, Kailai
Pfaff, Florian
Hanebeck, Uwe D.
author_sort Li, Kailai
collection PubMed
description In this work, we present a novel scheme for nonlinear hyperspherical estimation using the von Mises–Fisher distribution. Deterministic sample sets with an isotropic layout are exploited for the efficient and informative representation of the underlying distribution in a geometrically adaptive manner. The proposed deterministic sampling approach allows manually configurable sample sizes, considerably enhancing the filtering performance under strong nonlinearity. Furthermore, the progressive paradigm is applied to the fusing of measurements of non-identity models in conjunction with the isotropic sample sets. We evaluate the proposed filtering scheme in a nonlinear spherical tracking scenario based on simulations. Numerical results show the evidently superior performance of the proposed scheme over state-of-the-art von Mises–Fisher filters and the particle filter.
format Online
Article
Text
id pubmed-8123154
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-81231542021-05-16 Progressive von Mises–Fisher Filtering Using Isotropic Sample Sets for Nonlinear Hyperspherical Estimation † Li, Kailai Pfaff, Florian Hanebeck, Uwe D. Sensors (Basel) Article In this work, we present a novel scheme for nonlinear hyperspherical estimation using the von Mises–Fisher distribution. Deterministic sample sets with an isotropic layout are exploited for the efficient and informative representation of the underlying distribution in a geometrically adaptive manner. The proposed deterministic sampling approach allows manually configurable sample sizes, considerably enhancing the filtering performance under strong nonlinearity. Furthermore, the progressive paradigm is applied to the fusing of measurements of non-identity models in conjunction with the isotropic sample sets. We evaluate the proposed filtering scheme in a nonlinear spherical tracking scenario based on simulations. Numerical results show the evidently superior performance of the proposed scheme over state-of-the-art von Mises–Fisher filters and the particle filter. MDPI 2021-04-24 /pmc/articles/PMC8123154/ /pubmed/33923212 http://dx.doi.org/10.3390/s21092991 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Li, Kailai
Pfaff, Florian
Hanebeck, Uwe D.
Progressive von Mises–Fisher Filtering Using Isotropic Sample Sets for Nonlinear Hyperspherical Estimation †
title Progressive von Mises–Fisher Filtering Using Isotropic Sample Sets for Nonlinear Hyperspherical Estimation †
title_full Progressive von Mises–Fisher Filtering Using Isotropic Sample Sets for Nonlinear Hyperspherical Estimation †
title_fullStr Progressive von Mises–Fisher Filtering Using Isotropic Sample Sets for Nonlinear Hyperspherical Estimation †
title_full_unstemmed Progressive von Mises–Fisher Filtering Using Isotropic Sample Sets for Nonlinear Hyperspherical Estimation †
title_short Progressive von Mises–Fisher Filtering Using Isotropic Sample Sets for Nonlinear Hyperspherical Estimation †
title_sort progressive von mises–fisher filtering using isotropic sample sets for nonlinear hyperspherical estimation †
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8123154/
https://www.ncbi.nlm.nih.gov/pubmed/33923212
http://dx.doi.org/10.3390/s21092991
work_keys_str_mv AT likailai progressivevonmisesfisherfilteringusingisotropicsamplesetsfornonlinearhypersphericalestimation
AT pfaffflorian progressivevonmisesfisherfilteringusingisotropicsamplesetsfornonlinearhypersphericalestimation
AT hanebeckuwed progressivevonmisesfisherfilteringusingisotropicsamplesetsfornonlinearhypersphericalestimation