Cargando…

Transcriptome Analysis of Seed Weight Plasticity in Brassica napus

A critical barrier to improving crop yield is the trade-off between seed weight (SW) and seed number (SN), which has been commonly reported in several crops, including Brassica napus. Despite the agronomic relevance of this issue, the molecular factors involved in the interaction between SW and SN a...

Descripción completa

Detalles Bibliográficos
Autores principales: Canales, Javier, Verdejo, José, Carrasco-Puga, Gabriela, Castillo, Francisca M., Arenas-M, Anita, Calderini, Daniel F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8123204/
https://www.ncbi.nlm.nih.gov/pubmed/33923211
http://dx.doi.org/10.3390/ijms22094449
Descripción
Sumario:A critical barrier to improving crop yield is the trade-off between seed weight (SW) and seed number (SN), which has been commonly reported in several crops, including Brassica napus. Despite the agronomic relevance of this issue, the molecular factors involved in the interaction between SW and SN are largely unknown in crops. In this work, we performed a detailed transcriptomic analysis of 48 seed samples obtained from two rapeseed spring genotypes subjected to different source–sink (S–S) ratios in order to examine the relationship between SW and SN under different field conditions. A multifactorial analysis of the RNA-seq data was used to identify a group of 1014 genes exclusively regulated by the S–S ratio. We found that a reduction in the S–S ratio during seed filling induces the expression of genes involved in sucrose transport, seed weight, and stress responses. Moreover, we identified five co-expression modules that are positively correlated with SW and negatively correlated with SN. Interestingly, one of these modules was significantly enriched in transcription factors (TFs). Furthermore, our network analysis predicted several NAC TFs as major hubs underlying SW and SN compensation. Taken together, our study provides novel insights into the molecular factors associated with the SW–SN relationship in rapeseed and identifies TFs as potential targets when improving crop yield.