Cargando…
Deep Learning Prediction of Metastasis in Locally Advanced Colon Cancer Using Binary Histologic Tumor Images
SIMPLE SUMMARY: Deep learning methods are increasingly being applied for tissue classification to improve diagnosis and optimize therapy stratification. In this study, we developed the Binary ImaGe Colon Metastasis classifier (BIg-CoMet), a semi-guided approach for the stratification of colon cancer...
Autores principales: | Schiele, Stefan, Arndt, Tim Tobias, Martin, Benedikt, Miller, Silvia, Bauer, Svenja, Banner, Bettina Monika, Brendel, Eva-Maria, Schenkirsch, Gerhard, Anthuber, Matthias, Huss, Ralf, Märkl, Bruno, Müller, Gernot |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8123276/ https://www.ncbi.nlm.nih.gov/pubmed/33922988 http://dx.doi.org/10.3390/cancers13092074 |
Ejemplares similares
-
Tumor proportion in colon cancer: results from a semiautomatic image analysis approach
por: Martin, Benedikt, et al.
Publicado: (2020) -
Correction to: Tumor proportion in colon cancer: results from a semiautomatic image analysis approach
por: Martin, Benedikt, et al.
Publicado: (2021) -
Stroma AReactive Invasion Front Areas (SARIFA)—A New Easily to Determine Biomarker in Colon Cancer—Results of a Retrospective Study
por: Martin, Benedikt, et al.
Publicado: (2021) -
The prognostic significance of lymph node size in node-positive colon cancer
por: Schrembs, Philipp, et al.
Publicado: (2018) -
A new simple morphology‐based risk score is prognostic in stage I/II colon cancers
por: Märkl, Bruno, et al.
Publicado: (2016)