Cargando…
Model Simplification of Deep Random Forest for Real-Time Applications of Various Sensor Data
The deep random forest (DRF) has recently gained new attention in deep learning because it has a high performance similar to that of a deep neural network (DNN) and does not rely on a backpropagation. However, it connects a large number of decision trees to multiple layers, thereby making analysis d...
Autores principales: | Kim, Sangwon, Ko, Byoung-Chul, Nam, Jaeyeal |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8123293/ https://www.ncbi.nlm.nih.gov/pubmed/33922953 http://dx.doi.org/10.3390/s21093004 |
Ejemplares similares
-
Facial Expression Recognition Based on Squeeze Vision Transformer
por: Kim, Sangwon, et al.
Publicado: (2022) -
Light-Weight Student LSTM for Real-Time Wildfire Smoke Detection
por: Jeong, Mira, et al.
Publicado: (2020) -
Fast Human Detection for Intelligent Monitoring Using Surveillance Visible Sensors
por: Ko, Byoung Chul, et al.
Publicado: (2014) -
Fast Depth Estimation in a Single Image Using Lightweight Efficient Neural Network
por: Kim, Sangwon, et al.
Publicado: (2019) -
Simplification of Deep Neural Network-Based Object Detector for Real-Time Edge Computing
por: Choi, Kyoungtaek, et al.
Publicado: (2023)