Cargando…
Multiple Classifiers Based Semi-Supervised Polarimetric SAR Image Classification Method
Polarimetric synthetic aperture radar (PolSAR) image classification has played an important role in PolSAR data application. Deep learning has achieved great success in PolSAR image classification over the past years. However, when the labeled training dataset is insufficient, the classification res...
Autores principales: | Zhu, Lekun, Ma, Xiaoshuang, Wu, Penghai, Xu, Jiangong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8123318/ https://www.ncbi.nlm.nih.gov/pubmed/33922957 http://dx.doi.org/10.3390/s21093006 |
Ejemplares similares
-
Polarimetric SAR Speckle Filtering Using a Nonlocal Weighted LMMSE Filter
por: Shen, Yinbin, et al.
Publicado: (2021) -
Assessment of GF3 Full-Polarimetric SAR Data for Dryland Crop Classification with Different Polarimetric Decomposition Methods
por: Wang, Meng, et al.
Publicado: (2022) -
Multitemporal SAR Image Despeckling Based on a Scattering Covariance Matrix of Image Patch
por: Ma, Xiaoshuang, et al.
Publicado: (2019) -
Semi-supervised classifier guided by discriminator
por: Jamroziński, Sebastian, et al.
Publicado: (2022) -
Gaofen-3 PolSAR Image Classification via XGBoost and Polarimetric Spatial Information
por: Dong, Hao, et al.
Publicado: (2018)