Cargando…

Carrying Asymmetric Loads While Walking on a Treadmill Interferes with Lower Limb Coordination

The purpose of this study was to investigate the effect of different load carriage modes on coordinative patterns in the lower extremities during walking. Twenty-five university students walked on a treadmill at their preferred pace under three different load conditions: symmetric load (5% of body m...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Junsig, Stephenson, Mitchell L., Hass, Chris J., Janelle, Christopher M., Tillman, Mark D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8123349/
https://www.ncbi.nlm.nih.gov/pubmed/33922977
http://dx.doi.org/10.3390/ijerph18094549
Descripción
Sumario:The purpose of this study was to investigate the effect of different load carriage modes on coordinative patterns in the lower extremities during walking. Twenty-five university students walked on a treadmill at their preferred pace under three different load conditions: symmetric load (5% of body mass in messenger bags on each shoulder hanging vertically and against the hips), asymmetric load 1 (10% of body mass in a messenger bag on one shoulder hanging vertically against the ipsilateral hip), and asymmetric load 2 (10% of body mass in a messenger bag on one shoulder with the bag draped across the trunk to the contralateral hip). Altered thigh-shank and shank-foot couplings were found for the loaded side during the stance of gait when comparing the asymmetric 1 and 2 to the symmetric load. In addition, thigh-thigh coupling was changed during gait when comparing the asymmetric load 2 and symmetric load. However, we did not find any significant differences in intralimb and interlimb couplings between the two different asymmetric load conditions. The results suggest potential benefits when carrying symmetrical loads in order to decrease abnormal limb coordination in daily activities. Thus, it may be advisable to distribute load more symmetrically to avoid abnormal gait.