Cargando…
Privacy-Preserving Task-Matching and Multiple-Submissions Detection in Crowdsourcing
Crowdsourcing enables requesters to publish tasks to a platform and workers are rewarded for performing tasks of interest. It provides an efficient and low-cost way to aggregate data and solve problems that are difficult for computers but simple for humans. However, the privacy risks and challenges...
Autores principales: | Xu, Jie, Lin, Zhaowen, Wu, Jun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8123452/ https://www.ncbi.nlm.nih.gov/pubmed/33925947 http://dx.doi.org/10.3390/s21093036 |
Ejemplares similares
-
Mobility-Aware Privacy-Preserving Mobile Crowdsourcing †
por: Qiu, Guoying, et al.
Publicado: (2021) -
A Privacy-Preserving Traffic Monitoring Scheme via Vehicular Crowdsourcing
por: Zhang, Chuan, et al.
Publicado: (2019) -
Crowdsourced privacy-preserved feature tagging of short home videos for machine learning ASD detection
por: Washington, Peter, et al.
Publicado: (2021) -
Privacy preserving linkage using multiple match-keys
por: Randall, SM, et al.
Publicado: (2019) -
A Privacy Attack on Multiple Dynamic Match-key based Privacy-Preserving Record Linkage
por: Vidanage, A, et al.
Publicado: (2020)