Cargando…
Spatial robust fuzzy clustering of COVID 19 time series based on B-splines
The aim of the work is to identify a clustering structure for the 20 Italian regions according to the main variables related to COVID-19 pandemic. Data are observed over time, spanning from the last week of February 2020 to the first week of February 2021. Dealing with geographical units observed at...
Autores principales: | D’Urso, Pierpaolo, De Giovanni, Livia, Vitale, Vincenzina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Published by Elsevier B.V.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8123527/ https://www.ncbi.nlm.nih.gov/pubmed/34026473 http://dx.doi.org/10.1016/j.spasta.2021.100518 |
Ejemplares similares
-
A D-vine copula-based quantile regression model with spatial dependence for COVID-19 infection rate in Italy
por: D’Urso, Pierpaolo, et al.
Publicado: (2022) -
Spatio-temporal Object-Oriented Bayesian Network modelling of the COVID-19 Italian outbreak data
por: Vitale, Vincenzina, et al.
Publicado: (2022) -
Community mobility in the European regions during COVID-19 pandemic: A partitioning around medoids with noise cluster based on space–time autoregressive models
por: D’Urso, Pierpaolo, et al.
Publicado: (2022) -
Time series clustering and classification
por: Maharaj, Elizabeth Ann, et al.
Publicado: (2019) -
Measuring Competitiveness at NUTS3 Level and Territorial Partitioning of the Italian Provinces
por: D’Urso, Pierpaolo, et al.
Publicado: (2022)