Cargando…
Genome-Wide Analysis of the Late Embryogenesis Abundant (LEA) and Abscisic Acid-, Stress-, and Ripening-Induced (ASR) Gene Superfamily from Canavalia rosea and Their Roles in Salinity/Alkaline and Drought Tolerance
Canavalia rosea (bay bean), distributing in coastal areas or islands in tropical and subtropical regions, is an extremophile halophyte with good adaptability to seawater and drought. Late embryogenesis abundant (LEA) proteins typically accumulate in response to various abiotic stresses, including de...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8123667/ https://www.ncbi.nlm.nih.gov/pubmed/33925342 http://dx.doi.org/10.3390/ijms22094554 |
_version_ | 1783692973913931776 |
---|---|
author | Lin, Ruoyi Zou, Tao Mei, Qiming Wang, Zhengfeng Zhang, Mei Jian, Shuguang |
author_facet | Lin, Ruoyi Zou, Tao Mei, Qiming Wang, Zhengfeng Zhang, Mei Jian, Shuguang |
author_sort | Lin, Ruoyi |
collection | PubMed |
description | Canavalia rosea (bay bean), distributing in coastal areas or islands in tropical and subtropical regions, is an extremophile halophyte with good adaptability to seawater and drought. Late embryogenesis abundant (LEA) proteins typically accumulate in response to various abiotic stresses, including dehydration, salinity, high temperature, and cold, or during the late stage of seed development. Abscisic acid-, stress-, and ripening-induced (ASR) genes are stress and developmentally regulated plant-specific genes. In this study, we reported the first comprehensive survey of the LEA and ASR gene superfamily in C. rosea. A total of 84 CrLEAs and three CrASRs were identified in C. rosea and classified into nine groups. All CrLEAs and CrASRs harbored the conserved motif for their family proteins. Our results revealed that the CrLEA genes were widely distributed in different chromosomes, and all of the CrLEA/CrASR genes showed wide expression features in different tissues in C. rosea plants. Additionally, we introduced 10 genes from different groups into yeast to assess the functions of the CrLEAs/CrASRs. These results contribute to our understanding of LEA/ASR genes from halophytes and provide robust candidate genes for functional investigations in plant species adapted to extreme environments. |
format | Online Article Text |
id | pubmed-8123667 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-81236672021-05-16 Genome-Wide Analysis of the Late Embryogenesis Abundant (LEA) and Abscisic Acid-, Stress-, and Ripening-Induced (ASR) Gene Superfamily from Canavalia rosea and Their Roles in Salinity/Alkaline and Drought Tolerance Lin, Ruoyi Zou, Tao Mei, Qiming Wang, Zhengfeng Zhang, Mei Jian, Shuguang Int J Mol Sci Article Canavalia rosea (bay bean), distributing in coastal areas or islands in tropical and subtropical regions, is an extremophile halophyte with good adaptability to seawater and drought. Late embryogenesis abundant (LEA) proteins typically accumulate in response to various abiotic stresses, including dehydration, salinity, high temperature, and cold, or during the late stage of seed development. Abscisic acid-, stress-, and ripening-induced (ASR) genes are stress and developmentally regulated plant-specific genes. In this study, we reported the first comprehensive survey of the LEA and ASR gene superfamily in C. rosea. A total of 84 CrLEAs and three CrASRs were identified in C. rosea and classified into nine groups. All CrLEAs and CrASRs harbored the conserved motif for their family proteins. Our results revealed that the CrLEA genes were widely distributed in different chromosomes, and all of the CrLEA/CrASR genes showed wide expression features in different tissues in C. rosea plants. Additionally, we introduced 10 genes from different groups into yeast to assess the functions of the CrLEAs/CrASRs. These results contribute to our understanding of LEA/ASR genes from halophytes and provide robust candidate genes for functional investigations in plant species adapted to extreme environments. MDPI 2021-04-27 /pmc/articles/PMC8123667/ /pubmed/33925342 http://dx.doi.org/10.3390/ijms22094554 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Lin, Ruoyi Zou, Tao Mei, Qiming Wang, Zhengfeng Zhang, Mei Jian, Shuguang Genome-Wide Analysis of the Late Embryogenesis Abundant (LEA) and Abscisic Acid-, Stress-, and Ripening-Induced (ASR) Gene Superfamily from Canavalia rosea and Their Roles in Salinity/Alkaline and Drought Tolerance |
title | Genome-Wide Analysis of the Late Embryogenesis Abundant (LEA) and Abscisic Acid-, Stress-, and Ripening-Induced (ASR) Gene Superfamily from Canavalia rosea and Their Roles in Salinity/Alkaline and Drought Tolerance |
title_full | Genome-Wide Analysis of the Late Embryogenesis Abundant (LEA) and Abscisic Acid-, Stress-, and Ripening-Induced (ASR) Gene Superfamily from Canavalia rosea and Their Roles in Salinity/Alkaline and Drought Tolerance |
title_fullStr | Genome-Wide Analysis of the Late Embryogenesis Abundant (LEA) and Abscisic Acid-, Stress-, and Ripening-Induced (ASR) Gene Superfamily from Canavalia rosea and Their Roles in Salinity/Alkaline and Drought Tolerance |
title_full_unstemmed | Genome-Wide Analysis of the Late Embryogenesis Abundant (LEA) and Abscisic Acid-, Stress-, and Ripening-Induced (ASR) Gene Superfamily from Canavalia rosea and Their Roles in Salinity/Alkaline and Drought Tolerance |
title_short | Genome-Wide Analysis of the Late Embryogenesis Abundant (LEA) and Abscisic Acid-, Stress-, and Ripening-Induced (ASR) Gene Superfamily from Canavalia rosea and Their Roles in Salinity/Alkaline and Drought Tolerance |
title_sort | genome-wide analysis of the late embryogenesis abundant (lea) and abscisic acid-, stress-, and ripening-induced (asr) gene superfamily from canavalia rosea and their roles in salinity/alkaline and drought tolerance |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8123667/ https://www.ncbi.nlm.nih.gov/pubmed/33925342 http://dx.doi.org/10.3390/ijms22094554 |
work_keys_str_mv | AT linruoyi genomewideanalysisofthelateembryogenesisabundantleaandabscisicacidstressandripeninginducedasrgenesuperfamilyfromcanavaliaroseaandtheirrolesinsalinityalkalineanddroughttolerance AT zoutao genomewideanalysisofthelateembryogenesisabundantleaandabscisicacidstressandripeninginducedasrgenesuperfamilyfromcanavaliaroseaandtheirrolesinsalinityalkalineanddroughttolerance AT meiqiming genomewideanalysisofthelateembryogenesisabundantleaandabscisicacidstressandripeninginducedasrgenesuperfamilyfromcanavaliaroseaandtheirrolesinsalinityalkalineanddroughttolerance AT wangzhengfeng genomewideanalysisofthelateembryogenesisabundantleaandabscisicacidstressandripeninginducedasrgenesuperfamilyfromcanavaliaroseaandtheirrolesinsalinityalkalineanddroughttolerance AT zhangmei genomewideanalysisofthelateembryogenesisabundantleaandabscisicacidstressandripeninginducedasrgenesuperfamilyfromcanavaliaroseaandtheirrolesinsalinityalkalineanddroughttolerance AT jianshuguang genomewideanalysisofthelateembryogenesisabundantleaandabscisicacidstressandripeninginducedasrgenesuperfamilyfromcanavaliaroseaandtheirrolesinsalinityalkalineanddroughttolerance |