Cargando…
Using Machine Learning to Predict Invasive Bacterial Infections in Young Febrile Infants Visiting the Emergency Department
Background: The aim of this study was to develop and evaluate a machine learning (ML) model to predict invasive bacterial infections (IBIs) in young febrile infants visiting the emergency department (ED). Methods: This retrospective study was conducted in the EDs of three medical centers across Taiw...
Autores principales: | Chiu, I-Min, Cheng, Chi-Yung, Zeng, Wun-Huei, Huang, Ying-Hsien, Lin, Chun-Hung Richard |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8123681/ https://www.ncbi.nlm.nih.gov/pubmed/33925973 http://dx.doi.org/10.3390/jcm10091875 |
Ejemplares similares
-
Using Machine Learning to Predict Bacteremia in Febrile Children Presented to the Emergency Department
por: Tsai, Chih-Min, et al.
Publicado: (2020) -
Use of Machine Learning to Differentiate Children With Kawasaki Disease From Other Febrile Children in a Pediatric Emergency Department
por: Tsai, Chih-Min, et al.
Publicado: (2023) -
Emergency Department Crowding and Time to Antibiotic Administration in Febrile Infants
por: Light, Jennifer K., et al.
Publicado: (2013) -
C-reactive protein velocity to distinguish febrile bacterial infections from non-bacterial febrile illnesses in the emergency department
por: Paran, Yael, et al.
Publicado: (2009) -
Machine Learning Models for Survival and Neurological Outcome Prediction of Out-of-Hospital Cardiac Arrest Patients
por: Cheng, Chi-Yung, et al.
Publicado: (2021)