Cargando…
A Novel Method to Predict Drug-Target Interactions Based on Large-Scale Graph Representation Learning
SIMPLE SUMMARY: The traditional process of drug development is lengthy, time-consuming, and costly, whereas very few drugs ever make it to the clinic. The use of computational methods to detect drug side effects greatly reduces the deficiencies in drug clinical trials. Prediction of drug-target inte...
Autores principales: | Zhao, Bo-Wei, You, Zhu-Hong, Hu, Lun, Guo, Zhen-Hao, Wang, Lei, Chen, Zhan-Heng, Wong, Leon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8123765/ https://www.ncbi.nlm.nih.gov/pubmed/33925568 http://dx.doi.org/10.3390/cancers13092111 |
Ejemplares similares
-
MGRL: Predicting Drug-Disease Associations Based on Multi-Graph Representation Learning
por: Zhao, Bo-Wei, et al.
Publicado: (2021) -
iGRLDTI: an improved graph representation learning method for predicting drug–target interactions over heterogeneous biological information network
por: Zhao, Bo-Wei, et al.
Publicado: (2023) -
Learning Representations to Predict Intermolecular Interactions on Large-Scale Heterogeneous Molecular Association Network
por: Yi, Hai-Cheng, et al.
Publicado: (2020) -
GraphCPIs: A novel graph-based computational model for potential compound-protein interactions
por: Chen, Zhan-Heng, et al.
Publicado: (2023) -
Graph representation learning
por: Hamilton, William L
Publicado: (2020)