Cargando…
Deep-Emotion: Facial Expression Recognition Using Attentional Convolutional Network
Facial expression recognition has been an active area of research over the past few decades, and it is still challenging due to the high intra-class variation. Traditional approaches for this problem rely on hand-crafted features such as SIFT, HOG, and LBP, followed by a classifier trained on a data...
Autores principales: | Minaee, Shervin, Minaei, Mehdi, Abdolrashidi, Amirali |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8123912/ https://www.ncbi.nlm.nih.gov/pubmed/33925371 http://dx.doi.org/10.3390/s21093046 |
Ejemplares similares
-
Pre-trained Deep Convolution Neural Network Model With Attention for Speech Emotion Recognition
por: Zhang, Hua, et al.
Publicado: (2021) -
EmotionNet Nano: An Efficient Deep Convolutional Neural Network Design for Real-Time Facial Expression Recognition
por: Lee, James Ren, et al.
Publicado: (2021) -
Self-Difference Convolutional Neural Network for Facial Expression Recognition
por: Liu, Leyuan, et al.
Publicado: (2021) -
FERGCN: facial expression recognition based on graph convolution network
por: Liao, Lei, et al.
Publicado: (2022) -
Facial Expressions Recognition for Human–Robot Interaction Using Deep Convolutional Neural Networks with Rectified Adam Optimizer
por: Melinte, Daniel Octavian, et al.
Publicado: (2020)