Cargando…
Using Recursive Feature Selection with Random Forest to Improve Protein Structural Class Prediction for Low-Similarity Sequences
Many combinations of protein features are used to improve protein structural class prediction, but the information redundancy is often ignored. In order to select the important features with strong classification ability, we proposed a recursive feature selection with random forest to improve protei...
Autores principales: | Wang, Yaoxin, Xu, Yingjie, Yang, Zhenyu, Liu, Xiaoqing, Dai, Qi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8123985/ https://www.ncbi.nlm.nih.gov/pubmed/34055035 http://dx.doi.org/10.1155/2021/5529389 |
Ejemplares similares
-
Using recursive feature elimination in random forest to account for correlated variables in high dimensional data
por: Darst, Burcu F., et al.
Publicado: (2018) -
Prediction of Protein Structural Class Based on Gapped-Dipeptides and a Recursive Feature Selection Approach
por: Liu, Taigang, et al.
Publicado: (2015) -
Random forest methodology for model-based recursive partitioning: the mobForest package for R
por: Garge, Nikhil R, et al.
Publicado: (2013) -
Recursive Feature Selection with Significant Variables of Support Vectors
por: Tsai, Chen-An, et al.
Publicado: (2012) -
DNA methylation loci associated with atopy and high serum IgE: a genome-wide application of recursive Random Forest feature selection
por: Everson, Todd M., et al.
Publicado: (2015)