Cargando…
Localization of Immersed Sources by Modified Convolutional Neural Network: Application to a Deep-Sea Experiment
A modified convolutional neural network (CNN) is proposed to enhance the reliability of source ranging based on acoustic field data received by a vertical array. Compared to the traditional method, the output layer is modified by outputting Gauss regression sequences, expressed using a Gaussian prob...
Autores principales: | Xiao, Xu, Wang, Wenbo, Su, Lin, Guo, Xinyi, Ma, Li, Ren, Qunyan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8124261/ https://www.ncbi.nlm.nih.gov/pubmed/33946971 http://dx.doi.org/10.3390/s21093109 |
Ejemplares similares
-
Sound Source Localization Using a Convolutional Neural Network and Regression Model
por: Tan, Tan-Hsu, et al.
Publicado: (2021) -
Coastal Waste Detection Based on Deep Convolutional Neural Networks
por: Ren, Chengjuan, et al.
Publicado: (2021) -
Predicting enhancers with deep convolutional neural networks
por: Min, Xu, et al.
Publicado: (2017) -
Low-Rank Deep Convolutional Neural Network for Multitask Learning
por: Su, Fang, et al.
Publicado: (2019) -
Breast cancer detection: Shallow convolutional neural network against deep convolutional neural networks based approach
por: Das, Himanish Shekhar, et al.
Publicado: (2023)