Cargando…
Microwave-Assisted Two-Step Liquefaction of Acetone-Soluble Lignin of Silvergrass Saccharification Residue for Production of Biopolyol and Biopolyurethane
The application of microwave heating facilitated efficient two-step liquefaction of acetone-soluble lignin obtained from saccharification residue of Miscanthus sacchariflorus (silvergrass), which was prepared by enzymatic hydrolysis, to produce biopolyol with a low acid number and favorable hydroxyl...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8124352/ https://www.ncbi.nlm.nih.gov/pubmed/34066548 http://dx.doi.org/10.3390/polym13091491 |
_version_ | 1783693179405467648 |
---|---|
author | Tran, My Ha Yu, Ju-Hyun Lee, Eun Yeol |
author_facet | Tran, My Ha Yu, Ju-Hyun Lee, Eun Yeol |
author_sort | Tran, My Ha |
collection | PubMed |
description | The application of microwave heating facilitated efficient two-step liquefaction of acetone-soluble lignin obtained from saccharification residue of Miscanthus sacchariflorus (silvergrass), which was prepared by enzymatic hydrolysis, to produce biopolyol with a low acid number and favorable hydroxyl number. The acetone-soluble lignin was liquefied using a crude glycerol and 1,4-butanediol solvent mixture at various solvent blending ratios, biomass loadings, acid loadings, and reaction temperatures. The optimal reaction condition was determined at a solvent blending ratio of crude glycerol to 1,4-butanediol of 1:2, 20% of biomass loading, and 1% of catalyst loading at a reaction temperature of 140 °C for 10 min. Subsequently, the optimal biopolyol was directly used for the preparation of biopolyurethane foam as a value-added product. The chemical and physical properties of biopolyurethane foams derived from acetone-soluble lignin were characterized by Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), and high-resolution scanning electron microscopy (HR-SEM). In addition, mechanical properties of produced biopolyurethane foams, including compressive strength and density, were also characterized to suggest their appropriate applications. The results indicated that the biopolyurethane foam can be used as a green replacement for petroleum-based polyurethane foam due to its comparable thermal properties, mechanical strength, and morphological structure. |
format | Online Article Text |
id | pubmed-8124352 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-81243522021-05-17 Microwave-Assisted Two-Step Liquefaction of Acetone-Soluble Lignin of Silvergrass Saccharification Residue for Production of Biopolyol and Biopolyurethane Tran, My Ha Yu, Ju-Hyun Lee, Eun Yeol Polymers (Basel) Article The application of microwave heating facilitated efficient two-step liquefaction of acetone-soluble lignin obtained from saccharification residue of Miscanthus sacchariflorus (silvergrass), which was prepared by enzymatic hydrolysis, to produce biopolyol with a low acid number and favorable hydroxyl number. The acetone-soluble lignin was liquefied using a crude glycerol and 1,4-butanediol solvent mixture at various solvent blending ratios, biomass loadings, acid loadings, and reaction temperatures. The optimal reaction condition was determined at a solvent blending ratio of crude glycerol to 1,4-butanediol of 1:2, 20% of biomass loading, and 1% of catalyst loading at a reaction temperature of 140 °C for 10 min. Subsequently, the optimal biopolyol was directly used for the preparation of biopolyurethane foam as a value-added product. The chemical and physical properties of biopolyurethane foams derived from acetone-soluble lignin were characterized by Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), and high-resolution scanning electron microscopy (HR-SEM). In addition, mechanical properties of produced biopolyurethane foams, including compressive strength and density, were also characterized to suggest their appropriate applications. The results indicated that the biopolyurethane foam can be used as a green replacement for petroleum-based polyurethane foam due to its comparable thermal properties, mechanical strength, and morphological structure. MDPI 2021-05-06 /pmc/articles/PMC8124352/ /pubmed/34066548 http://dx.doi.org/10.3390/polym13091491 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Tran, My Ha Yu, Ju-Hyun Lee, Eun Yeol Microwave-Assisted Two-Step Liquefaction of Acetone-Soluble Lignin of Silvergrass Saccharification Residue for Production of Biopolyol and Biopolyurethane |
title | Microwave-Assisted Two-Step Liquefaction of Acetone-Soluble Lignin of Silvergrass Saccharification Residue for Production of Biopolyol and Biopolyurethane |
title_full | Microwave-Assisted Two-Step Liquefaction of Acetone-Soluble Lignin of Silvergrass Saccharification Residue for Production of Biopolyol and Biopolyurethane |
title_fullStr | Microwave-Assisted Two-Step Liquefaction of Acetone-Soluble Lignin of Silvergrass Saccharification Residue for Production of Biopolyol and Biopolyurethane |
title_full_unstemmed | Microwave-Assisted Two-Step Liquefaction of Acetone-Soluble Lignin of Silvergrass Saccharification Residue for Production of Biopolyol and Biopolyurethane |
title_short | Microwave-Assisted Two-Step Liquefaction of Acetone-Soluble Lignin of Silvergrass Saccharification Residue for Production of Biopolyol and Biopolyurethane |
title_sort | microwave-assisted two-step liquefaction of acetone-soluble lignin of silvergrass saccharification residue for production of biopolyol and biopolyurethane |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8124352/ https://www.ncbi.nlm.nih.gov/pubmed/34066548 http://dx.doi.org/10.3390/polym13091491 |
work_keys_str_mv | AT tranmyha microwaveassistedtwostepliquefactionofacetonesolubleligninofsilvergrasssaccharificationresidueforproductionofbiopolyolandbiopolyurethane AT yujuhyun microwaveassistedtwostepliquefactionofacetonesolubleligninofsilvergrasssaccharificationresidueforproductionofbiopolyolandbiopolyurethane AT leeeunyeol microwaveassistedtwostepliquefactionofacetonesolubleligninofsilvergrasssaccharificationresidueforproductionofbiopolyolandbiopolyurethane |