Cargando…
Distributed Joint Optimization of Beamforming and Power Allocation for Maximizing the Energy Efficiency of Cognitive Heterogeneous Networks
This paper investigated an energy-efficient beamforming and power allocation strategy for cognitive heterogeneous networks with multiple-input-single-output interference channels. To maximize the sum energy efficiency of secondary users (SUs) while keeping the interference to primary networks under...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8124503/ https://www.ncbi.nlm.nih.gov/pubmed/34064315 http://dx.doi.org/10.3390/s21093186 |
_version_ | 1783693223935344640 |
---|---|
author | Lee, Kisong |
author_facet | Lee, Kisong |
author_sort | Lee, Kisong |
collection | PubMed |
description | This paper investigated an energy-efficient beamforming and power allocation strategy for cognitive heterogeneous networks with multiple-input-single-output interference channels. To maximize the sum energy efficiency of secondary users (SUs) while keeping the interference to primary networks under a predetermined threshold, I propose a distributed resource allocation algorithm using dual methods, in which each SU updates its beamforming vector and transmit power iteratively without any information sharing until convergence. The simulation results verify that the performance of the proposed scheme is comparable to that of the optimal scheme but with a much shorter computation time. |
format | Online Article Text |
id | pubmed-8124503 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-81245032021-05-17 Distributed Joint Optimization of Beamforming and Power Allocation for Maximizing the Energy Efficiency of Cognitive Heterogeneous Networks Lee, Kisong Sensors (Basel) Communication This paper investigated an energy-efficient beamforming and power allocation strategy for cognitive heterogeneous networks with multiple-input-single-output interference channels. To maximize the sum energy efficiency of secondary users (SUs) while keeping the interference to primary networks under a predetermined threshold, I propose a distributed resource allocation algorithm using dual methods, in which each SU updates its beamforming vector and transmit power iteratively without any information sharing until convergence. The simulation results verify that the performance of the proposed scheme is comparable to that of the optimal scheme but with a much shorter computation time. MDPI 2021-05-04 /pmc/articles/PMC8124503/ /pubmed/34064315 http://dx.doi.org/10.3390/s21093186 Text en © 2021 by the author. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Communication Lee, Kisong Distributed Joint Optimization of Beamforming and Power Allocation for Maximizing the Energy Efficiency of Cognitive Heterogeneous Networks |
title | Distributed Joint Optimization of Beamforming and Power
Allocation for Maximizing the Energy Efficiency of Cognitive
Heterogeneous Networks |
title_full | Distributed Joint Optimization of Beamforming and Power
Allocation for Maximizing the Energy Efficiency of Cognitive
Heterogeneous Networks |
title_fullStr | Distributed Joint Optimization of Beamforming and Power
Allocation for Maximizing the Energy Efficiency of Cognitive
Heterogeneous Networks |
title_full_unstemmed | Distributed Joint Optimization of Beamforming and Power
Allocation for Maximizing the Energy Efficiency of Cognitive
Heterogeneous Networks |
title_short | Distributed Joint Optimization of Beamforming and Power
Allocation for Maximizing the Energy Efficiency of Cognitive
Heterogeneous Networks |
title_sort | distributed joint optimization of beamforming and power
allocation for maximizing the energy efficiency of cognitive
heterogeneous networks |
topic | Communication |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8124503/ https://www.ncbi.nlm.nih.gov/pubmed/34064315 http://dx.doi.org/10.3390/s21093186 |
work_keys_str_mv | AT leekisong distributedjointoptimizationofbeamformingandpowerallocationformaximizingtheenergyefficiencyofcognitiveheterogeneousnetworks |