Cargando…
Dynamic Acoustic Unit Augmentation with BPE-Dropout for Low-Resource End-to-End Speech Recognition
With the rapid development of speech assistants, adapting server-intended automatic speech recognition (ASR) solutions to a direct device has become crucial. For on-device speech recognition tasks, researchers and industry prefer end-to-end ASR systems as they can be made resource-efficient while ma...
Autores principales: | Laptev, Aleksandr, Andrusenko, Andrei, Podluzhny, Ivan, Mitrofanov, Anton, Medennikov, Ivan, Matveev, Yuri |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8124527/ https://www.ncbi.nlm.nih.gov/pubmed/33924798 http://dx.doi.org/10.3390/s21093063 |
Ejemplares similares
-
End-to-end emotional speech recognition using acoustic model adaptation based on knowledge distillation
por: Yun, Hong-In, et al.
Publicado: (2023) -
The Assessment of Background Parenchymal Enhancement (BPE) in a High-Risk Population: What Causes BPE?
por: You, Chao, et al.
Publicado: (2018) -
A study of transformer-based end-to-end speech recognition system for Kazakh language
por: Orken, Mamyrbayev, et al.
Publicado: (2022) -
Advances in Completely Automated Vowel Analysis for Sociophonetics: Using End-to-End Speech Recognition Systems With DARLA
por: Coto-Solano, Rolando, et al.
Publicado: (2021) -
End-to-end speech emotion recognition using a novel context-stacking dilated convolution neural network
por: Tang, Duowei, et al.
Publicado: (2021)