Cargando…

A Machine Learning Approach for Wear Monitoring of End Mill by Self-Powering Wireless Sensor Nodes

There are many tool condition monitoring solutions that use a variety of sensors. This paper presents a self-powering wireless sensor node for shank-type rotating tools and a method for real-time end mill wear monitoring. The novelty of the developed and patented sensor node is that the longitudinal...

Descripción completa

Detalles Bibliográficos
Autores principales: Ostasevicius, Vytautas, Karpavicius, Paulius, Paulauskaite-Taraseviciene, Agne, Jurenas, Vytautas, Mystkowski, Arkadiusz, Cesnavicius, Ramunas, Kizauskiene, Laura
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8124530/
https://www.ncbi.nlm.nih.gov/pubmed/33946491
http://dx.doi.org/10.3390/s21093137
Descripción
Sumario:There are many tool condition monitoring solutions that use a variety of sensors. This paper presents a self-powering wireless sensor node for shank-type rotating tools and a method for real-time end mill wear monitoring. The novelty of the developed and patented sensor node is that the longitudinal oscillations, which directly affect the intensity of the energy harvesting, are significantly intensified due to the helical grooves cut onto the conical surface of the tool holder horn. A wireless transmission of electrical impulses from the capacitor is proposed, where the collected electrical energy is charged and discharged when a defined potential is reached. The frequency of the discharge pulses is directly proportional to the wear level of the tool and, at the same time, to the surface roughness of the workpiece. By employing these measures, we investigate the support vector machine (SVM) approach for wear level prediction.