Cargando…
An Evaluation of Motion Trackers with Virtual Reality Sensor Technology in Comparison to a Marker-Based Motion Capture System Based on Joint Angles for Ergonomic Risk Assessment
The reproduction and simulation of workplaces, and the analysis of body postures during work processes, are parts of ergonomic risk assessments. A commercial virtual reality (VR) system offers the possibility to model complex work scenarios as virtual mock-ups and to evaluate their ergonomic designs...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8124554/ https://www.ncbi.nlm.nih.gov/pubmed/34062827 http://dx.doi.org/10.3390/s21093145 |
_version_ | 1783693239708024832 |
---|---|
author | Vox, Jan P. Weber, Anika Wolf, Karen Insa Izdebski, Krzysztof Schüler, Thomas König, Peter Wallhoff, Frank Friemert, Daniel |
author_facet | Vox, Jan P. Weber, Anika Wolf, Karen Insa Izdebski, Krzysztof Schüler, Thomas König, Peter Wallhoff, Frank Friemert, Daniel |
author_sort | Vox, Jan P. |
collection | PubMed |
description | The reproduction and simulation of workplaces, and the analysis of body postures during work processes, are parts of ergonomic risk assessments. A commercial virtual reality (VR) system offers the possibility to model complex work scenarios as virtual mock-ups and to evaluate their ergonomic designs by analyzing motion behavior while performing work processes. In this study a VR tracking sensor system (HTC Vive tracker) combined with an inverse kinematic model (Final IK) was compared with a marker-based optical motion capture system (Qualisys). Marker-based optical motion capture systems are considered the gold standard for motion analysis. Therefore, Qualisys was used as the ground truth in this study. The research question to be answered was how accurately the HTC Vive System combined with Final IK can measure joint angles used for ergonomic evaluation. Twenty-six subjects were observed simultaneously with both tracking systems while performing 20 defined movements. Sixteen joint angles were analyzed. Joint angle deviations between [Formula: see text] and [Formula: see text] were identified. These high deviations must be considered in ergonomic risk assessments when using a VR system. The results show that commercial low-budget tracking systems have the potential to map joint angles. Nevertheless, substantial weaknesses and inaccuracies in some body regions must be taken into account. Recommendations are provided to improve tracking accuracy and avoid systematic errors. |
format | Online Article Text |
id | pubmed-8124554 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-81245542021-05-17 An Evaluation of Motion Trackers with Virtual Reality Sensor Technology in Comparison to a Marker-Based Motion Capture System Based on Joint Angles for Ergonomic Risk Assessment Vox, Jan P. Weber, Anika Wolf, Karen Insa Izdebski, Krzysztof Schüler, Thomas König, Peter Wallhoff, Frank Friemert, Daniel Sensors (Basel) Article The reproduction and simulation of workplaces, and the analysis of body postures during work processes, are parts of ergonomic risk assessments. A commercial virtual reality (VR) system offers the possibility to model complex work scenarios as virtual mock-ups and to evaluate their ergonomic designs by analyzing motion behavior while performing work processes. In this study a VR tracking sensor system (HTC Vive tracker) combined with an inverse kinematic model (Final IK) was compared with a marker-based optical motion capture system (Qualisys). Marker-based optical motion capture systems are considered the gold standard for motion analysis. Therefore, Qualisys was used as the ground truth in this study. The research question to be answered was how accurately the HTC Vive System combined with Final IK can measure joint angles used for ergonomic evaluation. Twenty-six subjects were observed simultaneously with both tracking systems while performing 20 defined movements. Sixteen joint angles were analyzed. Joint angle deviations between [Formula: see text] and [Formula: see text] were identified. These high deviations must be considered in ergonomic risk assessments when using a VR system. The results show that commercial low-budget tracking systems have the potential to map joint angles. Nevertheless, substantial weaknesses and inaccuracies in some body regions must be taken into account. Recommendations are provided to improve tracking accuracy and avoid systematic errors. MDPI 2021-05-01 /pmc/articles/PMC8124554/ /pubmed/34062827 http://dx.doi.org/10.3390/s21093145 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Vox, Jan P. Weber, Anika Wolf, Karen Insa Izdebski, Krzysztof Schüler, Thomas König, Peter Wallhoff, Frank Friemert, Daniel An Evaluation of Motion Trackers with Virtual Reality Sensor Technology in Comparison to a Marker-Based Motion Capture System Based on Joint Angles for Ergonomic Risk Assessment |
title | An Evaluation of Motion Trackers with Virtual Reality Sensor Technology in Comparison to a Marker-Based Motion Capture System Based on Joint Angles for Ergonomic Risk Assessment |
title_full | An Evaluation of Motion Trackers with Virtual Reality Sensor Technology in Comparison to a Marker-Based Motion Capture System Based on Joint Angles for Ergonomic Risk Assessment |
title_fullStr | An Evaluation of Motion Trackers with Virtual Reality Sensor Technology in Comparison to a Marker-Based Motion Capture System Based on Joint Angles for Ergonomic Risk Assessment |
title_full_unstemmed | An Evaluation of Motion Trackers with Virtual Reality Sensor Technology in Comparison to a Marker-Based Motion Capture System Based on Joint Angles for Ergonomic Risk Assessment |
title_short | An Evaluation of Motion Trackers with Virtual Reality Sensor Technology in Comparison to a Marker-Based Motion Capture System Based on Joint Angles for Ergonomic Risk Assessment |
title_sort | evaluation of motion trackers with virtual reality sensor technology in comparison to a marker-based motion capture system based on joint angles for ergonomic risk assessment |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8124554/ https://www.ncbi.nlm.nih.gov/pubmed/34062827 http://dx.doi.org/10.3390/s21093145 |
work_keys_str_mv | AT voxjanp anevaluationofmotiontrackerswithvirtualrealitysensortechnologyincomparisontoamarkerbasedmotioncapturesystembasedonjointanglesforergonomicriskassessment AT weberanika anevaluationofmotiontrackerswithvirtualrealitysensortechnologyincomparisontoamarkerbasedmotioncapturesystembasedonjointanglesforergonomicriskassessment AT wolfkareninsa anevaluationofmotiontrackerswithvirtualrealitysensortechnologyincomparisontoamarkerbasedmotioncapturesystembasedonjointanglesforergonomicriskassessment AT izdebskikrzysztof anevaluationofmotiontrackerswithvirtualrealitysensortechnologyincomparisontoamarkerbasedmotioncapturesystembasedonjointanglesforergonomicriskassessment AT schulerthomas anevaluationofmotiontrackerswithvirtualrealitysensortechnologyincomparisontoamarkerbasedmotioncapturesystembasedonjointanglesforergonomicriskassessment AT konigpeter anevaluationofmotiontrackerswithvirtualrealitysensortechnologyincomparisontoamarkerbasedmotioncapturesystembasedonjointanglesforergonomicriskassessment AT wallhofffrank anevaluationofmotiontrackerswithvirtualrealitysensortechnologyincomparisontoamarkerbasedmotioncapturesystembasedonjointanglesforergonomicriskassessment AT friemertdaniel anevaluationofmotiontrackerswithvirtualrealitysensortechnologyincomparisontoamarkerbasedmotioncapturesystembasedonjointanglesforergonomicriskassessment AT voxjanp evaluationofmotiontrackerswithvirtualrealitysensortechnologyincomparisontoamarkerbasedmotioncapturesystembasedonjointanglesforergonomicriskassessment AT weberanika evaluationofmotiontrackerswithvirtualrealitysensortechnologyincomparisontoamarkerbasedmotioncapturesystembasedonjointanglesforergonomicriskassessment AT wolfkareninsa evaluationofmotiontrackerswithvirtualrealitysensortechnologyincomparisontoamarkerbasedmotioncapturesystembasedonjointanglesforergonomicriskassessment AT izdebskikrzysztof evaluationofmotiontrackerswithvirtualrealitysensortechnologyincomparisontoamarkerbasedmotioncapturesystembasedonjointanglesforergonomicriskassessment AT schulerthomas evaluationofmotiontrackerswithvirtualrealitysensortechnologyincomparisontoamarkerbasedmotioncapturesystembasedonjointanglesforergonomicriskassessment AT konigpeter evaluationofmotiontrackerswithvirtualrealitysensortechnologyincomparisontoamarkerbasedmotioncapturesystembasedonjointanglesforergonomicriskassessment AT wallhofffrank evaluationofmotiontrackerswithvirtualrealitysensortechnologyincomparisontoamarkerbasedmotioncapturesystembasedonjointanglesforergonomicriskassessment AT friemertdaniel evaluationofmotiontrackerswithvirtualrealitysensortechnologyincomparisontoamarkerbasedmotioncapturesystembasedonjointanglesforergonomicriskassessment |