Cargando…
Multi-Channel Generative Framework and Supervised Learning for Anomaly Detection in Surveillance Videos
Recently, most state-of-the-art anomaly detection methods are based on apparent motion and appearance reconstruction networks and use error estimation between generated and real information as detection features. These approaches achieve promising results by only using normal samples for training st...
Autores principales: | Vu, Tuan-Hung, Boonaert, Jacques, Ambellouis, Sebastien, Taleb-Ahmed, Abdelmalik |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8124646/ https://www.ncbi.nlm.nih.gov/pubmed/34063625 http://dx.doi.org/10.3390/s21093179 |
Ejemplares similares
-
Semi-Supervised Anomaly Detection in Video-Surveillance Scenes in the Wild
por: Sarker, Mohammad Ibrahim, et al.
Publicado: (2021) -
An Efficient Anomaly Recognition Framework Using an Attention Residual LSTM in Surveillance Videos
por: Ullah, Waseem, et al.
Publicado: (2021) -
Deep Learning-Based Anomaly Detection in Video Surveillance: A Survey
por: Duong, Huu-Thanh, et al.
Publicado: (2023) -
Weakly Supervised Violence Detection in Surveillance Video
por: Choqueluque-Roman, David, et al.
Publicado: (2022) -
Efficient anomaly recognition using surveillance videos
por: Saleem, Gulshan, et al.
Publicado: (2022)