Cargando…
Sucrose Utilization for Improved Crop Yields: A Review Article
Photosynthetic carbon converted to sucrose is vital for plant growth. Sucrose acts as a signaling molecule and a primary energy source that coordinates the source and sink development. Alteration in source–sink balance halts the physiological and developmental processes of plants, since plant growth...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8124652/ https://www.ncbi.nlm.nih.gov/pubmed/33946791 http://dx.doi.org/10.3390/ijms22094704 |
_version_ | 1783693269902819328 |
---|---|
author | Aluko, Oluwaseun Olayemi Li, Chuanzong Wang, Qian Liu, Haobao |
author_facet | Aluko, Oluwaseun Olayemi Li, Chuanzong Wang, Qian Liu, Haobao |
author_sort | Aluko, Oluwaseun Olayemi |
collection | PubMed |
description | Photosynthetic carbon converted to sucrose is vital for plant growth. Sucrose acts as a signaling molecule and a primary energy source that coordinates the source and sink development. Alteration in source–sink balance halts the physiological and developmental processes of plants, since plant growth is mostly triggered when the primary assimilates in the source leaf balance with the metabolic needs of the heterotrophic sinks. To measure up with the sink organ’s metabolic needs, the improvement of photosynthetic carbon to synthesis sucrose, its remobilization, and utilization at the sink level becomes imperative. However, environmental cues that influence sucrose balance within these plant organs, limiting positive yield prospects, have also been a rising issue over the past few decades. Thus, this review discusses strategies to improve photosynthetic carbon assimilation, the pathways actively involved in the transport of sucrose from source to sink organs, and their utilization at the sink organ. We further emphasize the impact of various environmental cues on sucrose transport and utilization, and the strategic yield improvement approaches under such conditions. |
format | Online Article Text |
id | pubmed-8124652 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-81246522021-05-17 Sucrose Utilization for Improved Crop Yields: A Review Article Aluko, Oluwaseun Olayemi Li, Chuanzong Wang, Qian Liu, Haobao Int J Mol Sci Review Photosynthetic carbon converted to sucrose is vital for plant growth. Sucrose acts as a signaling molecule and a primary energy source that coordinates the source and sink development. Alteration in source–sink balance halts the physiological and developmental processes of plants, since plant growth is mostly triggered when the primary assimilates in the source leaf balance with the metabolic needs of the heterotrophic sinks. To measure up with the sink organ’s metabolic needs, the improvement of photosynthetic carbon to synthesis sucrose, its remobilization, and utilization at the sink level becomes imperative. However, environmental cues that influence sucrose balance within these plant organs, limiting positive yield prospects, have also been a rising issue over the past few decades. Thus, this review discusses strategies to improve photosynthetic carbon assimilation, the pathways actively involved in the transport of sucrose from source to sink organs, and their utilization at the sink organ. We further emphasize the impact of various environmental cues on sucrose transport and utilization, and the strategic yield improvement approaches under such conditions. MDPI 2021-04-29 /pmc/articles/PMC8124652/ /pubmed/33946791 http://dx.doi.org/10.3390/ijms22094704 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Aluko, Oluwaseun Olayemi Li, Chuanzong Wang, Qian Liu, Haobao Sucrose Utilization for Improved Crop Yields: A Review Article |
title | Sucrose Utilization for Improved Crop Yields: A Review Article |
title_full | Sucrose Utilization for Improved Crop Yields: A Review Article |
title_fullStr | Sucrose Utilization for Improved Crop Yields: A Review Article |
title_full_unstemmed | Sucrose Utilization for Improved Crop Yields: A Review Article |
title_short | Sucrose Utilization for Improved Crop Yields: A Review Article |
title_sort | sucrose utilization for improved crop yields: a review article |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8124652/ https://www.ncbi.nlm.nih.gov/pubmed/33946791 http://dx.doi.org/10.3390/ijms22094704 |
work_keys_str_mv | AT alukooluwaseunolayemi sucroseutilizationforimprovedcropyieldsareviewarticle AT lichuanzong sucroseutilizationforimprovedcropyieldsareviewarticle AT wangqian sucroseutilizationforimprovedcropyieldsareviewarticle AT liuhaobao sucroseutilizationforimprovedcropyieldsareviewarticle |