Cargando…
Synthesis of Bis-Terpyridine-Based Metallopolymers and the Thermoelectric Properties of Their Single Walled Carbon Nanotube Composites
Although the organic and the conventional inorganic thermoelectric (TE) materials have been extensively developed in recent years, the number of cases involving conducting metallopolymers is still quite limited. In view of the versatile coordination capability of the terpyridine fraction and the ele...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8124700/ https://www.ncbi.nlm.nih.gov/pubmed/33924768 http://dx.doi.org/10.3390/molecules26092560 |
_version_ | 1783693284500045824 |
---|---|
author | Li, Jiahua Guo, Zeling Xu, Linli Wong, Wai-Yeung |
author_facet | Li, Jiahua Guo, Zeling Xu, Linli Wong, Wai-Yeung |
author_sort | Li, Jiahua |
collection | PubMed |
description | Although the organic and the conventional inorganic thermoelectric (TE) materials have been extensively developed in recent years, the number of cases involving conducting metallopolymers is still quite limited. In view of the versatile coordination capability of the terpyridine fraction and the electron-rich nature of the 3,4-ethylenedioxythiophene moiety, a bis-terpyridine-featured ligand was designed, and a series of metallopolymers were then synthesized. Upon the addition of single-walled carbon nanotube (SWCNT), the TE properties of the resulting metallopolymer-SWCNT composite films were investigated. It was found that metal centres played an important role in affecting the morphology of the thin films, which was a key factor that determined the TE performances of the composites. Additionally, the energy levels of the metallopolymers were feasibly tuned by selecting different metal centres. With the combined effects of a uniform and condensed surface and an optimized band structure, the highest power factor was achieved by the Cu(II)-containing metallopolymer-SWCNT composite at the doping ratio of 75%, which reached 38.3 μW·m(−1)·K(−2). |
format | Online Article Text |
id | pubmed-8124700 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-81247002021-05-17 Synthesis of Bis-Terpyridine-Based Metallopolymers and the Thermoelectric Properties of Their Single Walled Carbon Nanotube Composites Li, Jiahua Guo, Zeling Xu, Linli Wong, Wai-Yeung Molecules Article Although the organic and the conventional inorganic thermoelectric (TE) materials have been extensively developed in recent years, the number of cases involving conducting metallopolymers is still quite limited. In view of the versatile coordination capability of the terpyridine fraction and the electron-rich nature of the 3,4-ethylenedioxythiophene moiety, a bis-terpyridine-featured ligand was designed, and a series of metallopolymers were then synthesized. Upon the addition of single-walled carbon nanotube (SWCNT), the TE properties of the resulting metallopolymer-SWCNT composite films were investigated. It was found that metal centres played an important role in affecting the morphology of the thin films, which was a key factor that determined the TE performances of the composites. Additionally, the energy levels of the metallopolymers were feasibly tuned by selecting different metal centres. With the combined effects of a uniform and condensed surface and an optimized band structure, the highest power factor was achieved by the Cu(II)-containing metallopolymer-SWCNT composite at the doping ratio of 75%, which reached 38.3 μW·m(−1)·K(−2). MDPI 2021-04-28 /pmc/articles/PMC8124700/ /pubmed/33924768 http://dx.doi.org/10.3390/molecules26092560 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Li, Jiahua Guo, Zeling Xu, Linli Wong, Wai-Yeung Synthesis of Bis-Terpyridine-Based Metallopolymers and the Thermoelectric Properties of Their Single Walled Carbon Nanotube Composites |
title | Synthesis of Bis-Terpyridine-Based Metallopolymers and the Thermoelectric Properties of Their Single Walled Carbon Nanotube Composites |
title_full | Synthesis of Bis-Terpyridine-Based Metallopolymers and the Thermoelectric Properties of Their Single Walled Carbon Nanotube Composites |
title_fullStr | Synthesis of Bis-Terpyridine-Based Metallopolymers and the Thermoelectric Properties of Their Single Walled Carbon Nanotube Composites |
title_full_unstemmed | Synthesis of Bis-Terpyridine-Based Metallopolymers and the Thermoelectric Properties of Their Single Walled Carbon Nanotube Composites |
title_short | Synthesis of Bis-Terpyridine-Based Metallopolymers and the Thermoelectric Properties of Their Single Walled Carbon Nanotube Composites |
title_sort | synthesis of bis-terpyridine-based metallopolymers and the thermoelectric properties of their single walled carbon nanotube composites |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8124700/ https://www.ncbi.nlm.nih.gov/pubmed/33924768 http://dx.doi.org/10.3390/molecules26092560 |
work_keys_str_mv | AT lijiahua synthesisofbisterpyridinebasedmetallopolymersandthethermoelectricpropertiesoftheirsinglewalledcarbonnanotubecomposites AT guozeling synthesisofbisterpyridinebasedmetallopolymersandthethermoelectricpropertiesoftheirsinglewalledcarbonnanotubecomposites AT xulinli synthesisofbisterpyridinebasedmetallopolymersandthethermoelectricpropertiesoftheirsinglewalledcarbonnanotubecomposites AT wongwaiyeung synthesisofbisterpyridinebasedmetallopolymersandthethermoelectricpropertiesoftheirsinglewalledcarbonnanotubecomposites |