Cargando…
Learning U-Net Based Multi-Scale Features in Encoding-Decoding for MR Image Brain Tissue Segmentation
Accurate brain tissue segmentation of MRI is vital to diagnosis aiding, treatment planning, and neurologic condition monitoring. As an excellent convolutional neural network (CNN), U-Net is widely used in MR image segmentation as it usually generates high-precision features. However, the performance...
Autores principales: | Long, Jiao-Song, Ma, Guang-Zhi, Song, En-Min, Jin, Ren-Chao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8124734/ https://www.ncbi.nlm.nih.gov/pubmed/34067101 http://dx.doi.org/10.3390/s21093232 |
Ejemplares similares
-
A Multi-Scale Feature Fusion Method Based on U-Net for Retinal Vessel Segmentation
por: Yang, Dan, et al.
Publicado: (2020) -
Efficient U-Net Architecture with Multiple Encoders and Attention Mechanism Decoders for Brain Tumor Segmentation
por: Aboussaleh, Ilyasse, et al.
Publicado: (2023) -
BrainSeg-Net: Brain Tumor MR Image Segmentation via Enhanced Encoder–Decoder Network
por: Rehman, Mobeen Ur, et al.
Publicado: (2021) -
MSU-Net: Multi-Scale U-Net for 2D Medical Image Segmentation
por: Su, Run, et al.
Publicado: (2021) -
Multi-channel Image Registration of Cardiac MR Using Supervised Feature Learning with Convolutional Encoder-Decoder Network
por: Lu, Xuesong, et al.
Publicado: (2020)