Cargando…
Random Access Using Deep Reinforcement Learning in Dense Mobile Networks
5G and Beyond 5G mobile networks use several high-frequency spectrum bands such as the millimeter-wave (mmWave) bands to alleviate the problem of bandwidth scarcity. However high-frequency bands do not cover larger distances. The coverage problem is addressed by using a heterogeneous network which c...
Autores principales: | Bekele, Yared Zerihun, Choi, Young-June |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8124859/ https://www.ncbi.nlm.nih.gov/pubmed/34063132 http://dx.doi.org/10.3390/s21093210 |
Ejemplares similares
-
Deep Reinforcement Learning for Edge Caching with Mobility Prediction in Vehicular Networks
por: Choi, Yoonjeong, et al.
Publicado: (2023) -
Learning Mobile Manipulation through Deep Reinforcement Learning
por: Wang, Cong, et al.
Publicado: (2020) -
An Efficient and Reliable Routing Method for Hybrid Mobile Ad Hoc Networks Using Deep Reinforcement Learning
por: Alkadhmi, Murtadha M. A., et al.
Publicado: (2020) -
Deep reinforcement learning for wireless networks
por: Yu, F Richard, et al.
Publicado: (2019) -
A densely interconnected network for deep learning accelerated MRI
por: Ottesen, Jon André, et al.
Publicado: (2022)