Cargando…
Influence of Gamma Irradiation on Electric Cables Models: Study of Additive Effects by Mid-Infrared Spectroscopy
Cables, especially their insulation and jacket materials made of polymers, are vulnerable to ageing degradation during normal operation. However, they must remain functional for the entire life of a nuclear power plant, or even in the event of an accident for cables with a safety requirement. This s...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8124882/ https://www.ncbi.nlm.nih.gov/pubmed/33946155 http://dx.doi.org/10.3390/polym13091451 |
_version_ | 1783693338516389888 |
---|---|
author | Maléchaux, Astrid Colombani, Juliette Amat, Sandrine Marque, Sylvain R. A. Dupuy, Nathalie |
author_facet | Maléchaux, Astrid Colombani, Juliette Amat, Sandrine Marque, Sylvain R. A. Dupuy, Nathalie |
author_sort | Maléchaux, Astrid |
collection | PubMed |
description | Cables, especially their insulation and jacket materials made of polymers, are vulnerable to ageing degradation during normal operation. However, they must remain functional for the entire life of a nuclear power plant, or even in the event of an accident for cables with a safety requirement. This study focuses on models of crosslinked polyethylene (XLPE)-based insulation of cables and deals with the structure modification and the behavior of XLPE for nuclear applications due to the effect of additives. Various additives are added to the polymer formulation to evaluate their impact on ageing. The samples are irradiated at room temperature by several gamma doses, up to 374 kGy, with two dose rates (40 Gy/h and 300 Gy/h) and compared with a non-irradiated sample used as reference. To understand the impact of gamma irradiation on the materials, the principal component analysis (PCA) method is applied on spectra recorded through attenuated total reflectance–Fourier transform infrared (ATR-FTIR) spectroscopy. The results highlight the effects of ageing depending on the dose rate and on the formulation of the materials, with the identification of different degradation products. A curve resolution study compares the effects of different additives on polymer oxidation and shows that the low dose rate leads to a higher degradation than the high dose rate. |
format | Online Article Text |
id | pubmed-8124882 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-81248822021-05-17 Influence of Gamma Irradiation on Electric Cables Models: Study of Additive Effects by Mid-Infrared Spectroscopy Maléchaux, Astrid Colombani, Juliette Amat, Sandrine Marque, Sylvain R. A. Dupuy, Nathalie Polymers (Basel) Article Cables, especially their insulation and jacket materials made of polymers, are vulnerable to ageing degradation during normal operation. However, they must remain functional for the entire life of a nuclear power plant, or even in the event of an accident for cables with a safety requirement. This study focuses on models of crosslinked polyethylene (XLPE)-based insulation of cables and deals with the structure modification and the behavior of XLPE for nuclear applications due to the effect of additives. Various additives are added to the polymer formulation to evaluate their impact on ageing. The samples are irradiated at room temperature by several gamma doses, up to 374 kGy, with two dose rates (40 Gy/h and 300 Gy/h) and compared with a non-irradiated sample used as reference. To understand the impact of gamma irradiation on the materials, the principal component analysis (PCA) method is applied on spectra recorded through attenuated total reflectance–Fourier transform infrared (ATR-FTIR) spectroscopy. The results highlight the effects of ageing depending on the dose rate and on the formulation of the materials, with the identification of different degradation products. A curve resolution study compares the effects of different additives on polymer oxidation and shows that the low dose rate leads to a higher degradation than the high dose rate. MDPI 2021-04-30 /pmc/articles/PMC8124882/ /pubmed/33946155 http://dx.doi.org/10.3390/polym13091451 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Maléchaux, Astrid Colombani, Juliette Amat, Sandrine Marque, Sylvain R. A. Dupuy, Nathalie Influence of Gamma Irradiation on Electric Cables Models: Study of Additive Effects by Mid-Infrared Spectroscopy |
title | Influence of Gamma Irradiation on Electric Cables Models: Study of Additive Effects by Mid-Infrared Spectroscopy |
title_full | Influence of Gamma Irradiation on Electric Cables Models: Study of Additive Effects by Mid-Infrared Spectroscopy |
title_fullStr | Influence of Gamma Irradiation on Electric Cables Models: Study of Additive Effects by Mid-Infrared Spectroscopy |
title_full_unstemmed | Influence of Gamma Irradiation on Electric Cables Models: Study of Additive Effects by Mid-Infrared Spectroscopy |
title_short | Influence of Gamma Irradiation on Electric Cables Models: Study of Additive Effects by Mid-Infrared Spectroscopy |
title_sort | influence of gamma irradiation on electric cables models: study of additive effects by mid-infrared spectroscopy |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8124882/ https://www.ncbi.nlm.nih.gov/pubmed/33946155 http://dx.doi.org/10.3390/polym13091451 |
work_keys_str_mv | AT malechauxastrid influenceofgammairradiationonelectriccablesmodelsstudyofadditiveeffectsbymidinfraredspectroscopy AT colombanijuliette influenceofgammairradiationonelectriccablesmodelsstudyofadditiveeffectsbymidinfraredspectroscopy AT amatsandrine influenceofgammairradiationonelectriccablesmodelsstudyofadditiveeffectsbymidinfraredspectroscopy AT marquesylvainra influenceofgammairradiationonelectriccablesmodelsstudyofadditiveeffectsbymidinfraredspectroscopy AT dupuynathalie influenceofgammairradiationonelectriccablesmodelsstudyofadditiveeffectsbymidinfraredspectroscopy |