Cargando…

Cellular and Virtualization Technologies for UAVs: An Experimental Perspective

The Unmanned Aircraft System (UAS) ecosystem is exponentially growing in both recreational and professional fields to provide novel services and applications to consumers from multiple engineering fields. However, this technology has only scraped the surface of its potential, especially in those cas...

Descripción completa

Detalles Bibliográficos
Autores principales: Sanchez-Aguero, Victor, Gonzalez, Luis F., Valera, Francisco, Vidal, Ivan, López da Silva, Rafael A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8124884/
https://www.ncbi.nlm.nih.gov/pubmed/33946705
http://dx.doi.org/10.3390/s21093093
Descripción
Sumario:The Unmanned Aircraft System (UAS) ecosystem is exponentially growing in both recreational and professional fields to provide novel services and applications to consumers from multiple engineering fields. However, this technology has only scraped the surface of its potential, especially in those cases that require fast reaction times. Accordingly, the UAS Traffic Management (UTM) project aims at efficiently managing the air traffic for Unmanned Aerial Vehicle (UAV) operations, including those cases where UAVs might be remotely managed from a completely different geographical location. With these considerations in mind, this article presents a cellular-assisted UAVs testbed used to complete a mission managed beyond the radio line-of-sight (BRLoS), as well as introducing a virtualization platform for deploying services using containerization technology. In addition, the article conducts a communication performance evaluation in order to determine if the testbed equipment meets the requirements to carry out this BRLoS management. Finally, indoor flight operations are carried out to demonstrate the feasibility and proper operation of the testbed.