Cargando…

Development of a Tellurium Speciation Study Using IC-ICP-MS on Soil Samples Taken from an Area Associated with the Storage, Processing, and Recovery of Electrowaste

The optimization and validation of a methodology for determining and extracting inorganic ionic Te(VI) and Te(IV) forms in easily-leached fractions of soil by Ion Chromatography-Inductively Coupled Plasma-Mass Spectrometry (IC-ICP-MS) were studied. In this paper, the total concentration of Te, pH, a...

Descripción completa

Detalles Bibliográficos
Autores principales: Grygoyć, Katarzyna, Jabłońska-Czapla, Magdalena
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8124937/
https://www.ncbi.nlm.nih.gov/pubmed/33946621
http://dx.doi.org/10.3390/molecules26092651
Descripción
Sumario:The optimization and validation of a methodology for determining and extracting inorganic ionic Te(VI) and Te(IV) forms in easily-leached fractions of soil by Ion Chromatography-Inductively Coupled Plasma-Mass Spectrometry (IC-ICP-MS) were studied. In this paper, the total concentration of Te, pH, and red-ox potential were determined. Ions were successfully separated in 4 min on a Hamilton PRPX100 column with 0.002 mg/kg and 0.004 mg/kg limits of detection for Te(VI) and Te(IV), respectively. Soil samples were collected from areas subjected to the influence of an electrowaste processing and sorting plant. Sequential chemical extraction of soils showed that tellurium was bound mainly with sulphides, organic matter, and silicates. Optimization of soil extraction allowed 20% average extraction efficiency to be obtained, using 100 mM citric acid as the extractant. In the tested soil samples, both tellurium species were present. In most cases, the soils contained a reduced Te form, or the concentrations of both species were similar.