Cargando…
ResSANet: Learning Geometric Information for Point Cloud Processing
Point clouds with rich local geometric information have potentially huge implications in several applications, especially in areas of robotic manipulation and autonomous driving. However, most point cloud processing methods cannot extract enough geometric features from a raw point cloud, which restr...
Autores principales: | Zhu, Xiaojun, Zhang, Zheng, Ruan, Jian, Liu, Houde, Sun, Hanxu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8124999/ https://www.ncbi.nlm.nih.gov/pubmed/34066612 http://dx.doi.org/10.3390/s21093227 |
Ejemplares similares
-
Growth parameter acquisition and geometric point cloud completion of lettuce
por: Lou, Mingzhao, et al.
Publicado: (2022) -
Geometric Feature Extraction of Point Cloud of Chemical
Reactor Based on Dynamic Graph Convolution Neural Network
por: Xing, Zhizhong, et al.
Publicado: (2021) -
Automatic generation of structural geometric digital twins from point clouds
por: Mirzaei, Kaveh, et al.
Publicado: (2022) -
Facial Expression Recognition with Geometric Scattering on 3D Point Clouds
por: He, Yi, et al.
Publicado: (2022) -
A Geometric-Feature-Based Method for Automatic Extraction of Anchor Rod Points from Dense Point Cloud
por: Li, Siyuan, et al.
Publicado: (2022)