Cargando…
Human Respiratory Syncytial Virus Subgroup A and B Infections in Nasal, Bronchial, Small-Airway, and Organoid-Derived Respiratory Cultures
Human respiratory syncytial virus (HRSV) is the leading cause of bronchiolitis in infants. Two subgroups of HRSV (A and B) routinely cocirculate. Most research has been performed with HRSV-A strains because these are easier to culture than HRSV-B strains. In this study, we aimed to compare the repli...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8125053/ https://www.ncbi.nlm.nih.gov/pubmed/33980679 http://dx.doi.org/10.1128/mSphere.00237-21 |
_version_ | 1783693386893492224 |
---|---|
author | Rijsbergen, L. C. Lamers, M. M. Comvalius, A. D. Koutstaal, R. W. Schipper, D. Duprex, W. P. Haagmans, B. L. de Vries, R. D. de Swart, R. L. |
author_facet | Rijsbergen, L. C. Lamers, M. M. Comvalius, A. D. Koutstaal, R. W. Schipper, D. Duprex, W. P. Haagmans, B. L. de Vries, R. D. de Swart, R. L. |
author_sort | Rijsbergen, L. C. |
collection | PubMed |
description | Human respiratory syncytial virus (HRSV) is the leading cause of bronchiolitis in infants. Two subgroups of HRSV (A and B) routinely cocirculate. Most research has been performed with HRSV-A strains because these are easier to culture than HRSV-B strains. In this study, we aimed to compare the replicative fitness and HRSV-induced innate cytokine responses of HRSV-A and HRSV-B strains in disease-relevant cell culture models. We used two recombinant (r) clinical isolate-based HRSV strains (A11 and B05) and one recombinant laboratory-adapted HRSV strain (A2) to infect commercially available nasal, bronchial, and small-airway cultures. Epithelial cells from all anatomical locations were susceptible to HRSV infection despite the induction of a dominant type III interferon response. Subgroup A viruses disseminated and replicated faster than the subgroup B virus. Additionally, we studied HRSV infection and innate responses in airway organoids (AOs) cultured at air-liquid interface (ALI). Results were similar to the commercially obtained bronchial cells. In summary, we show that HRSV replicates well in cells from both the upper and the lower airways, with a slight replicative advantage for subgroup A viruses. Lastly, we showed that AOs cultured at ALI are a valuable model for studying HRSV ex vivo and that they can be used in the future to study factors that influence HRSV disease severity. IMPORTANCE Human respiratory syncytial virus (HRSV) is the major cause of bronchiolitis and pneumonia in young infants and causes almost 200,000 deaths per year. Currently, there is no vaccine or treatment available, only a prophylactic monoclonal antibody (palivizumab). An important question in HRSV pathogenesis research is why only a fraction (1 to 3%) of infants develop severe disease. Model systems comprising disease-relevant HRSV isolates and accurate and reproducible cell culture models are indispensable to study infection, replication, and innate immune responses. Here, we used differentiated AOs cultured at ALI to model the human airways. Subgroup A viruses replicated better than subgroup B viruses, which we speculate fits with epidemiological findings that subgroup A viruses cause more severe disease in infants. By using AOs cultured at ALI, we present a highly relevant, robust, and reproducible model that allows for future studies into what drives severe HRSV disease. |
format | Online Article Text |
id | pubmed-8125053 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | American Society for Microbiology |
record_format | MEDLINE/PubMed |
spelling | pubmed-81250532021-05-21 Human Respiratory Syncytial Virus Subgroup A and B Infections in Nasal, Bronchial, Small-Airway, and Organoid-Derived Respiratory Cultures Rijsbergen, L. C. Lamers, M. M. Comvalius, A. D. Koutstaal, R. W. Schipper, D. Duprex, W. P. Haagmans, B. L. de Vries, R. D. de Swart, R. L. mSphere Research Article Human respiratory syncytial virus (HRSV) is the leading cause of bronchiolitis in infants. Two subgroups of HRSV (A and B) routinely cocirculate. Most research has been performed with HRSV-A strains because these are easier to culture than HRSV-B strains. In this study, we aimed to compare the replicative fitness and HRSV-induced innate cytokine responses of HRSV-A and HRSV-B strains in disease-relevant cell culture models. We used two recombinant (r) clinical isolate-based HRSV strains (A11 and B05) and one recombinant laboratory-adapted HRSV strain (A2) to infect commercially available nasal, bronchial, and small-airway cultures. Epithelial cells from all anatomical locations were susceptible to HRSV infection despite the induction of a dominant type III interferon response. Subgroup A viruses disseminated and replicated faster than the subgroup B virus. Additionally, we studied HRSV infection and innate responses in airway organoids (AOs) cultured at air-liquid interface (ALI). Results were similar to the commercially obtained bronchial cells. In summary, we show that HRSV replicates well in cells from both the upper and the lower airways, with a slight replicative advantage for subgroup A viruses. Lastly, we showed that AOs cultured at ALI are a valuable model for studying HRSV ex vivo and that they can be used in the future to study factors that influence HRSV disease severity. IMPORTANCE Human respiratory syncytial virus (HRSV) is the major cause of bronchiolitis and pneumonia in young infants and causes almost 200,000 deaths per year. Currently, there is no vaccine or treatment available, only a prophylactic monoclonal antibody (palivizumab). An important question in HRSV pathogenesis research is why only a fraction (1 to 3%) of infants develop severe disease. Model systems comprising disease-relevant HRSV isolates and accurate and reproducible cell culture models are indispensable to study infection, replication, and innate immune responses. Here, we used differentiated AOs cultured at ALI to model the human airways. Subgroup A viruses replicated better than subgroup B viruses, which we speculate fits with epidemiological findings that subgroup A viruses cause more severe disease in infants. By using AOs cultured at ALI, we present a highly relevant, robust, and reproducible model that allows for future studies into what drives severe HRSV disease. American Society for Microbiology 2021-05-12 /pmc/articles/PMC8125053/ /pubmed/33980679 http://dx.doi.org/10.1128/mSphere.00237-21 Text en Copyright © 2021 Rijsbergen et al. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Research Article Rijsbergen, L. C. Lamers, M. M. Comvalius, A. D. Koutstaal, R. W. Schipper, D. Duprex, W. P. Haagmans, B. L. de Vries, R. D. de Swart, R. L. Human Respiratory Syncytial Virus Subgroup A and B Infections in Nasal, Bronchial, Small-Airway, and Organoid-Derived Respiratory Cultures |
title | Human Respiratory Syncytial Virus Subgroup A and B Infections in Nasal, Bronchial, Small-Airway, and Organoid-Derived Respiratory Cultures |
title_full | Human Respiratory Syncytial Virus Subgroup A and B Infections in Nasal, Bronchial, Small-Airway, and Organoid-Derived Respiratory Cultures |
title_fullStr | Human Respiratory Syncytial Virus Subgroup A and B Infections in Nasal, Bronchial, Small-Airway, and Organoid-Derived Respiratory Cultures |
title_full_unstemmed | Human Respiratory Syncytial Virus Subgroup A and B Infections in Nasal, Bronchial, Small-Airway, and Organoid-Derived Respiratory Cultures |
title_short | Human Respiratory Syncytial Virus Subgroup A and B Infections in Nasal, Bronchial, Small-Airway, and Organoid-Derived Respiratory Cultures |
title_sort | human respiratory syncytial virus subgroup a and b infections in nasal, bronchial, small-airway, and organoid-derived respiratory cultures |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8125053/ https://www.ncbi.nlm.nih.gov/pubmed/33980679 http://dx.doi.org/10.1128/mSphere.00237-21 |
work_keys_str_mv | AT rijsbergenlc humanrespiratorysyncytialvirussubgroupaandbinfectionsinnasalbronchialsmallairwayandorganoidderivedrespiratorycultures AT lamersmm humanrespiratorysyncytialvirussubgroupaandbinfectionsinnasalbronchialsmallairwayandorganoidderivedrespiratorycultures AT comvaliusad humanrespiratorysyncytialvirussubgroupaandbinfectionsinnasalbronchialsmallairwayandorganoidderivedrespiratorycultures AT koutstaalrw humanrespiratorysyncytialvirussubgroupaandbinfectionsinnasalbronchialsmallairwayandorganoidderivedrespiratorycultures AT schipperd humanrespiratorysyncytialvirussubgroupaandbinfectionsinnasalbronchialsmallairwayandorganoidderivedrespiratorycultures AT duprexwp humanrespiratorysyncytialvirussubgroupaandbinfectionsinnasalbronchialsmallairwayandorganoidderivedrespiratorycultures AT haagmansbl humanrespiratorysyncytialvirussubgroupaandbinfectionsinnasalbronchialsmallairwayandorganoidderivedrespiratorycultures AT devriesrd humanrespiratorysyncytialvirussubgroupaandbinfectionsinnasalbronchialsmallairwayandorganoidderivedrespiratorycultures AT deswartrl humanrespiratorysyncytialvirussubgroupaandbinfectionsinnasalbronchialsmallairwayandorganoidderivedrespiratorycultures |