Cargando…
The Role of Senescent Cells in Acquired Drug Resistance and Secondary Cancer in BRAFi-Treated Melanoma
SIMPLE SUMMARY: Advances in melanoma treatment include v-Raf murine sarcoma viral oncogene homolog B (BRAF) inhibitors that target the predominant oncogenic mutation found in malignant melanoma. Despite initial success of the BRAF inhibitor (BRAFi) therapies, resistance and secondary cancer often oc...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8125319/ https://www.ncbi.nlm.nih.gov/pubmed/34066966 http://dx.doi.org/10.3390/cancers13092241 |
Sumario: | SIMPLE SUMMARY: Advances in melanoma treatment include v-Raf murine sarcoma viral oncogene homolog B (BRAF) inhibitors that target the predominant oncogenic mutation found in malignant melanoma. Despite initial success of the BRAF inhibitor (BRAFi) therapies, resistance and secondary cancer often occur. Mechanisms of resistance and secondary cancer rely on upregulation of pro-survival pathways that circumvent senescence. The repeated identification of a cellular senescent phenotype throughout melanoma progression demonstrates the contribution of senescent cells in resistance and secondary cancer development. Incorporating senotherapeutics in melanoma treatment may offer a novel approach for potentially improving clinical outcome. ABSTRACT: BRAF is the most common gene mutated in malignant melanoma, and predominately it is a missense mutation of codon 600 in the kinase domain. This oncogenic BRAF missense mutation results in constitutive activation of the mitogen-activate protein kinase (MAPK) pro-survival pathway. Several BRAF inhibitors (BRAFi) have been developed to specifically inhibit BRAF(V600) mutations that improve melanoma survival, but resistance and secondary cancer often occur. Causal mechanisms of BRAFi-induced secondary cancer and resistance have been identified through upregulation of MAPK and alternate pro-survival pathways. In addition, overriding of cellular senescence is observed throughout the progression of disease from benign nevi to malignant melanoma. In this review, we discuss melanoma BRAF mutations, the genetic mechanism of BRAFi resistance, and the evidence supporting the role of senescent cells in melanoma disease progression, drug resistance and secondary cancer. We further highlight the potential benefit of targeting senescent cells with senotherapeutics as adjuvant therapy in combating melanoma. |
---|