Cargando…
The Effects of Individual Differences, Non-Stationarity, and the Importance of Data Partitioning Decisions for Training and Testing of EEG Cross-Participant Models
EEG-based deep learning models have trended toward models that are designed to perform classification on any individual (cross-participant models). However, because EEG varies across participants due to non-stationarity and individual differences, certain guidelines must be followed for partitioning...
Autores principales: | Kamrud, Alexander, Borghetti, Brett, Schubert Kabban, Christine |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8125354/ https://www.ncbi.nlm.nih.gov/pubmed/34066595 http://dx.doi.org/10.3390/s21093225 |
Ejemplares similares
-
Generalized Deep Learning EEG Models for Cross-Participant and Cross-Task Detection of the Vigilance Decrement in Sustained Attention Tasks
por: Kamrud, Alexander, et al.
Publicado: (2021) -
Cross-Participant EEG-Based Assessment of Cognitive Workload Using Multi-Path Convolutional Recurrent Neural Networks
por: Hefron, Ryan, et al.
Publicado: (2018) -
Quasi-Stationarity of EEG for Intraoperative Monitoring during Spinal Surgeries
por: Vedala, Krishnatej, et al.
Publicado: (2014) -
A Robust Test for Detecting Non-Stationarity
por: Mohanty, S D
Publicado: (1999) -
Coupling, stationarity, and regeneration /
por: Thorisson, Hermann
Publicado: (2000)