Cargando…
Pure Ion Chromatograms Combined with Advanced Machine Learning Methods Improve Accuracy of Discriminant Models in LC–MS-Based Untargeted Metabolomics
Untargeted metabolomics based on liquid chromatography coupled with mass spectrometry (LC–MS) can detect thousands of features in samples and produce highly complex datasets. The accurate extraction of meaningful features and the building of discriminant models are two crucial steps in the data anal...
Autores principales: | Tian, Miao, Lin, Zhonglong, Wang, Xu, Yang, Jing, Zhao, Wentao, Lu, Hongmei, Zhang, Zhimin, Chen, Yi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8125400/ https://www.ncbi.nlm.nih.gov/pubmed/34063107 http://dx.doi.org/10.3390/molecules26092715 |
Ejemplares similares
-
Filtering procedures for untargeted LC-MS metabolomics data
por: Schiffman, Courtney, et al.
Publicado: (2019) -
Automated Annotation of Untargeted All-Ion Fragmentation
LC–MS Metabolomics Data with MetaboAnnotatoR
por: Graça, Gonçalo, et al.
Publicado: (2022) -
Untargeted and Targeted LC-MS/MS Based Metabolomics Study on In Vitro Culture of Phaeoacremonium Species
por: Reveglia, Pierluigi, et al.
Publicado: (2022) -
Discrimination of pancreatic cancer and pancreatitis by LC-MS metabolomics
por: Lindahl, Anna, et al.
Publicado: (2017) -
XFlow: An algorithm for extracting ion chromatograms
por: Gutierrez, Mathew, et al.
Publicado: (2020)