Cargando…
Co-Training for Deep Object Detection: Comparing Single-Modal and Multi-Modal Approaches
Top-performing computer vision models are powered by convolutional neural networks (CNNs). Training an accurate CNN highly depends on both the raw sensor data and their associated ground truth (GT). Collecting such GT is usually done through human labeling, which is time-consuming and does not scale...
Autores principales: | Gómez, Jose L., Villalonga, Gabriel, López, Antonio M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8125436/ https://www.ncbi.nlm.nih.gov/pubmed/34064323 http://dx.doi.org/10.3390/s21093185 |
Ejemplares similares
-
Multi-Modal Song Mood Detection with Deep Learning †
por: Pyrovolakis, Konstantinos, et al.
Publicado: (2022) -
Multi-Modality Image Fusion and Object Detection Based on Semantic Information
por: Liu, Yong, et al.
Publicado: (2023) -
Applying deep learning-based multi-modal for detection of coronavirus
por: Rani, Geeta, et al.
Publicado: (2021) -
Multi-Modal Fake News Detection via Bridging the Gap between Modals
por: Liu, Peng, et al.
Publicado: (2023) -
Multi-modal novelty and familiarity detection
por: Panchev, Christo
Publicado: (2013)