Cargando…
Exploring Optimized Spiking Neural Network Architectures for Classification Tasks on Embedded Platforms
In recent times, the usage of modern neuromorphic hardware for brain-inspired SNNs has grown exponentially. In the context of sparse input data, they are undertaking low power consumption for event-based neuromorphic hardware, specifically in the deeper layers. However, using deep ANNs for training...
Autores principales: | Syed, Tehreem, Kakani, Vijay, Cui, Xuenan, Kim, Hakil |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8125750/ https://www.ncbi.nlm.nih.gov/pubmed/34067080 http://dx.doi.org/10.3390/s21093240 |
Ejemplares similares
-
Implementation of Field-Programmable Gate Array Platform for Object Classification Tasks Using Spike-Based Backpropagated Deep Convolutional Spiking Neural Networks
por: Kakani, Vijay, et al.
Publicado: (2023) -
Vision-Based Tactile Sensor Mechanism for the Estimation of Contact Position and Force Distribution Using Deep Learning
por: Kakani, Vijay, et al.
Publicado: (2021) -
Automatic Distortion Rectification of Wide-Angle Images Using Outlier Refinement for Streamlining Vision Tasks
por: Kakani, Vijay, et al.
Publicado: (2020) -
fPADnet: Small and Efficient Convolutional Neural Network for Presentation Attack Detection
por: Nguyen, Thi Hai Binh, et al.
Publicado: (2018) -
Surface Thermo-Dynamic Characterization of Poly (Vinylidene Chloride-Co-Acrylonitrile) (P(VDC-co-AN)) Using Inverse-Gas Chromatography and Investigation of Visual Traits Using Computer Vision Image Processing Algorithms
por: Kakani, Vijay, et al.
Publicado: (2020)