Cargando…

Application of Polymer Drugs with Cerium Dioxide Nanomolecules and Mesenchymal Stem Cells for the Treatment of Skin Wounds in Aged Rats

The urgency of the problem of wound healing is not in doubt, given the global trend of an increase in the number of operations and injuries with skin damage, as well as the lack of universal means of treating wounds. Study Objective: To compare the effectiveness of the developed drugs, smart polymer...

Descripción completa

Detalles Bibliográficos
Autores principales: Silina, Ekaterina Vladimirovna, Stupin, Victor Aleksandrovich, Suzdaltseva, Yulia Gennadievna, Aliev, Salekh Rovshanovich, Abramov, Igor Sergeevich, Khokhlov, Nikolay Valerievich
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8125777/
https://www.ncbi.nlm.nih.gov/pubmed/34062803
http://dx.doi.org/10.3390/polym13091467
Descripción
Sumario:The urgency of the problem of wound healing is not in doubt, given the global trend of an increase in the number of operations and injuries with skin damage, as well as the lack of universal means of treating wounds. Study Objective: To compare the effectiveness of the developed drugs, smart polymeric nano-drug with cerium oxide nanoparticles (SPN), and smart polymeric nano-drug in combination with mesenchymal stem cells (SPN + SC) on the healing process of skin wounds. Material and methods. An experimental study was carried out using Wistar rats of post-reproductive age, which had dermis and epidermis removed on their backs. There were four groups of wounds in total: control, treatment with mesenchymal stem cells (SC), SPN, and SPN + SC. Results. A positive therapeutic effect of polymeric drugs on the dynamics of wound area reduction was established, which was most typical for wounds of the SPN group and, particularly, the SPN + SC group. On the third day, an anti-inflammatory effect was revealed in the SC and the SPN + SC groups in particular, which was expressed in a reduced leukocyte infiltration and an increase in the level of microcirculation during this period. The fastest transition from the phase of exudation to proliferation was recorded in the SPN and SPN + SC groups. Histologically, these groups showed faster regeneration, including the epithelialization of wounds. Conclusion. The results obtained in the course of the study open up possibilities for the development of fundamentally new, highly effective wound healing agents.