Cargando…
Alterations of the Platelet Proteome in Lung Cancer: Accelerated F13A1 and ER Processing as New Actors in Hypercoagulability
SIMPLE SUMMARY: The risk of venous thromboembolism in cancer is nine times higher than in the general population and the second leading cause of death in these patients. Tissue factor and downstream plasmatic coagulation cascade are largely responsible for the risk of thrombosis in cancer. In recent...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8125802/ https://www.ncbi.nlm.nih.gov/pubmed/34066760 http://dx.doi.org/10.3390/cancers13092260 |
_version_ | 1783693607903952896 |
---|---|
author | Ercan, Huriye Mauracher, Lisa-Marie Grilz, Ella Hell, Lena Hellinger, Roland Schmid, Johannes A. Moik, Florian Ay, Cihan Pabinger, Ingrid Zellner, Maria |
author_facet | Ercan, Huriye Mauracher, Lisa-Marie Grilz, Ella Hell, Lena Hellinger, Roland Schmid, Johannes A. Moik, Florian Ay, Cihan Pabinger, Ingrid Zellner, Maria |
author_sort | Ercan, Huriye |
collection | PubMed |
description | SIMPLE SUMMARY: The risk of venous thromboembolism in cancer is nine times higher than in the general population and the second leading cause of death in these patients. Tissue factor and downstream plasmatic coagulation cascade are largely responsible for the risk of thrombosis in cancer. In recent years, it has been increasingly recognised that platelets also play a central role in tumour growth and cancer-associated thrombosis. The underlying molecular mechanisms are largely unknown. In order to comprehensively investigate the biochemical changes in platelets from cancers with high risk of thrombosis, we examined the platelet proteome of brain and lung cancer patients in comparison to sex and age-matched healthy controls. However, we only found alterations in lung cancer, where some of these platelet proteins directly promote thrombosis. One example is the increased amount of the enzyme protein disulfide isomerase, which is clinically investigated as an antithrombotic drug target of the plant-based flavonol quercetin. ABSTRACT: In order to comprehensively expose cancer-related biochemical changes, we compared the platelet proteome of two types of cancer with a high risk of thrombosis (22 patients with brain cancer, 19 with lung cancer) to 41 matched healthy controls using unbiased two-dimensional differential in-gel electrophoresis. The examined platelet proteome was unchanged in patients with brain cancer, but considerably affected in lung cancer with 15 significantly altered proteins. Amongst these, the endoplasmic reticulum (ER) proteins calreticulin (CALR), endoplasmic reticulum chaperone BiP (HSPA5) and protein disulfide-isomerase (P4HB) were significantly elevated. Accelerated conversion of the fibrin stabilising factor XIII was detected in platelets of patients with lung cancer by elevated levels of a coagulation factor XIII (F13A1) 55 kDa fragment. A significant correlation of this F13A1 cleavage product with plasma levels of the plasmin–α-2-antiplasmin complex and D-dimer suggests its enhanced degradation by the fibrinolytic system. Protein association network analysis showed that lung cancer-related proteins were involved in platelet degranulation and upregulated ER protein processing. As a possible outcome, plasma FVIII, an immediate end product for ER-mediated glycosylation, correlated significantly with the ER-executing chaperones CALR and HSPA5. These new data on the differential behaviour of platelets in various cancers revealed F13A1 and ER chaperones as potential novel diagnostic and therapeutic targets in lung cancer patients. |
format | Online Article Text |
id | pubmed-8125802 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-81258022021-05-17 Alterations of the Platelet Proteome in Lung Cancer: Accelerated F13A1 and ER Processing as New Actors in Hypercoagulability Ercan, Huriye Mauracher, Lisa-Marie Grilz, Ella Hell, Lena Hellinger, Roland Schmid, Johannes A. Moik, Florian Ay, Cihan Pabinger, Ingrid Zellner, Maria Cancers (Basel) Article SIMPLE SUMMARY: The risk of venous thromboembolism in cancer is nine times higher than in the general population and the second leading cause of death in these patients. Tissue factor and downstream plasmatic coagulation cascade are largely responsible for the risk of thrombosis in cancer. In recent years, it has been increasingly recognised that platelets also play a central role in tumour growth and cancer-associated thrombosis. The underlying molecular mechanisms are largely unknown. In order to comprehensively investigate the biochemical changes in platelets from cancers with high risk of thrombosis, we examined the platelet proteome of brain and lung cancer patients in comparison to sex and age-matched healthy controls. However, we only found alterations in lung cancer, where some of these platelet proteins directly promote thrombosis. One example is the increased amount of the enzyme protein disulfide isomerase, which is clinically investigated as an antithrombotic drug target of the plant-based flavonol quercetin. ABSTRACT: In order to comprehensively expose cancer-related biochemical changes, we compared the platelet proteome of two types of cancer with a high risk of thrombosis (22 patients with brain cancer, 19 with lung cancer) to 41 matched healthy controls using unbiased two-dimensional differential in-gel electrophoresis. The examined platelet proteome was unchanged in patients with brain cancer, but considerably affected in lung cancer with 15 significantly altered proteins. Amongst these, the endoplasmic reticulum (ER) proteins calreticulin (CALR), endoplasmic reticulum chaperone BiP (HSPA5) and protein disulfide-isomerase (P4HB) were significantly elevated. Accelerated conversion of the fibrin stabilising factor XIII was detected in platelets of patients with lung cancer by elevated levels of a coagulation factor XIII (F13A1) 55 kDa fragment. A significant correlation of this F13A1 cleavage product with plasma levels of the plasmin–α-2-antiplasmin complex and D-dimer suggests its enhanced degradation by the fibrinolytic system. Protein association network analysis showed that lung cancer-related proteins were involved in platelet degranulation and upregulated ER protein processing. As a possible outcome, plasma FVIII, an immediate end product for ER-mediated glycosylation, correlated significantly with the ER-executing chaperones CALR and HSPA5. These new data on the differential behaviour of platelets in various cancers revealed F13A1 and ER chaperones as potential novel diagnostic and therapeutic targets in lung cancer patients. MDPI 2021-05-08 /pmc/articles/PMC8125802/ /pubmed/34066760 http://dx.doi.org/10.3390/cancers13092260 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Ercan, Huriye Mauracher, Lisa-Marie Grilz, Ella Hell, Lena Hellinger, Roland Schmid, Johannes A. Moik, Florian Ay, Cihan Pabinger, Ingrid Zellner, Maria Alterations of the Platelet Proteome in Lung Cancer: Accelerated F13A1 and ER Processing as New Actors in Hypercoagulability |
title | Alterations of the Platelet Proteome in Lung Cancer: Accelerated F13A1 and ER Processing as New Actors in Hypercoagulability |
title_full | Alterations of the Platelet Proteome in Lung Cancer: Accelerated F13A1 and ER Processing as New Actors in Hypercoagulability |
title_fullStr | Alterations of the Platelet Proteome in Lung Cancer: Accelerated F13A1 and ER Processing as New Actors in Hypercoagulability |
title_full_unstemmed | Alterations of the Platelet Proteome in Lung Cancer: Accelerated F13A1 and ER Processing as New Actors in Hypercoagulability |
title_short | Alterations of the Platelet Proteome in Lung Cancer: Accelerated F13A1 and ER Processing as New Actors in Hypercoagulability |
title_sort | alterations of the platelet proteome in lung cancer: accelerated f13a1 and er processing as new actors in hypercoagulability |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8125802/ https://www.ncbi.nlm.nih.gov/pubmed/34066760 http://dx.doi.org/10.3390/cancers13092260 |
work_keys_str_mv | AT ercanhuriye alterationsoftheplateletproteomeinlungcanceracceleratedf13a1anderprocessingasnewactorsinhypercoagulability AT mauracherlisamarie alterationsoftheplateletproteomeinlungcanceracceleratedf13a1anderprocessingasnewactorsinhypercoagulability AT grilzella alterationsoftheplateletproteomeinlungcanceracceleratedf13a1anderprocessingasnewactorsinhypercoagulability AT helllena alterationsoftheplateletproteomeinlungcanceracceleratedf13a1anderprocessingasnewactorsinhypercoagulability AT hellingerroland alterationsoftheplateletproteomeinlungcanceracceleratedf13a1anderprocessingasnewactorsinhypercoagulability AT schmidjohannesa alterationsoftheplateletproteomeinlungcanceracceleratedf13a1anderprocessingasnewactorsinhypercoagulability AT moikflorian alterationsoftheplateletproteomeinlungcanceracceleratedf13a1anderprocessingasnewactorsinhypercoagulability AT aycihan alterationsoftheplateletproteomeinlungcanceracceleratedf13a1anderprocessingasnewactorsinhypercoagulability AT pabingeringrid alterationsoftheplateletproteomeinlungcanceracceleratedf13a1anderprocessingasnewactorsinhypercoagulability AT zellnermaria alterationsoftheplateletproteomeinlungcanceracceleratedf13a1anderprocessingasnewactorsinhypercoagulability |