Cargando…
Attention Networks for the Quality Enhancement of Light Field Images
In this paper, we propose a novel filtering method based on deep attention networks for the quality enhancement of light field (LF) images captured by plenoptic cameras and compressed using the High Efficiency Video Coding (HEVC) standard. The proposed architecture was built using efficient complex...
Autores principales: | Schiopu, Ionut, Munteanu, Adrian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8125823/ https://www.ncbi.nlm.nih.gov/pubmed/34067191 http://dx.doi.org/10.3390/s21093246 |
Ejemplares similares
-
Depth Estimation for Light-Field Images Using Stereo Matching and Convolutional Neural Networks
por: Rogge, Ségolène, et al.
Publicado: (2020) -
Deep Learning Post-Filtering Using Multi-Head Attention and Multiresolution Feature Fusion for Image and Intra-Video Quality Enhancement
por: Schiopu, Ionut, et al.
Publicado: (2022) -
Framework for Vehicle Make and Model Recognition—A New Large-Scale Dataset and an Efficient Two-Branch–Two-Stage Deep Learning Architecture
por: Lyu, Yangxintong, et al.
Publicado: (2022) -
Real-Time Instance Segmentation of Traffic Videos for Embedded Devices
por: Panero Martinez, Ruben, et al.
Publicado: (2021) -
Cyclic Generative Attention-Adversarial Network for Low-Light Image Enhancement
por: Zhen, Tong, et al.
Publicado: (2023)