Cargando…
Effective Microorganisms (EM) Improve Internal Organ Morphology, Intestinal Morphometry and Serum Biochemical Activity in Japanese Quails under Clostridium perfringens Challenge
The effect of effective microorganisms (EM) on internal organ morphology, intestinal morphometry, and serum biochemical activity in Japanese quails under Clostridium perfringens challenge was determined. After 30 days of EM addition, one group of quails was orally inoculated with Clostridium perfrin...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8125893/ https://www.ncbi.nlm.nih.gov/pubmed/34066903 http://dx.doi.org/10.3390/molecules26092786 |
Sumario: | The effect of effective microorganisms (EM) on internal organ morphology, intestinal morphometry, and serum biochemical activity in Japanese quails under Clostridium perfringens challenge was determined. After 30 days of EM addition, one group of quails was orally inoculated with Clostridium perfringens. The second group did not receive EM and was inoculated with C. perfringens. In the gut, EM supplementation reduced the number of lesions, enhanced gut health, and protected the mucosa from pathogenic bacteria. EM showed an anti-inflammatory effect and fewer necrotic lesions in villi. In the internal organs, EM showed a protective effect against a typical lesion of C. perfringens infection. Necrosis and degeneration of the hepatocytes, necrosis of bile ducts, and bile duct proliferation were more severe in the infected group without EM. Morphometric evaluation showed significantly higher villi in the jejunum after EM addition. A greater crypt depth was observed in the C. perfringens group. Biochemical analysis of the blood indicated lower cholesterol on the 12th day of the experiment and between-group differences in total protein, lactate dehydrogenase (LDH), and albumin levels in the EM group. Further studies are needed to improve EM activity against pathologic bacteria as a potential alternative to antibiotics and to develop future natural production systems. |
---|