Cargando…
Automatic vs. Human Recognition of Pain Intensity from Facial Expression on the X-ITE Pain Database
Prior work on automated methods demonstrated that it is possible to recognize pain intensity from frontal faces in videos, while there is an assumption that humans are very adept at this task compared to machines. In this paper, we investigate whether such an assumption is correct by comparing the r...
Autores principales: | Othman, Ehsan, Werner, Philipp, Saxen, Frerk, Al-Hamadi, Ayoub, Gruss, Sascha, Walter, Steffen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8125973/ https://www.ncbi.nlm.nih.gov/pubmed/34068462 http://dx.doi.org/10.3390/s21093273 |
Ejemplares similares
-
Automated Electrodermal Activity and Facial Expression Analysis for Continuous Pain Intensity Monitoring on the X-ITE Pain Database
por: Othman, Ehsan, et al.
Publicado: (2023) -
An Automatic System for Continuous Pain Intensity Monitoring Based on Analyzing Data from Uni-, Bi-, and Multi-Modality
por: Othman, Ehsan, et al.
Publicado: (2022) -
Predicting Group Contribution Behaviour in a Public Goods Game from Face-to-Face Communication
por: Othman, Ehsan, et al.
Publicado: (2019) -
Pain Intensity Recognition Rates via Biopotential Feature Patterns with Support Vector Machines
por: Gruss, Sascha, et al.
Publicado: (2015) -
Head movements and postures as pain behavior
por: Werner, Philipp, et al.
Publicado: (2018)